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(Both L"(f; k) and L"(f; k) have an interpretation in terms of Nielsen fixed

point theory, but we will not make use of this.) ‘
Theorem 6.16 together with the proof of (6.12) yields the following

formula. For all sufficiently large w:

hive - . -
LXQM = L GL'(S5Q, L)
i=p+1
Since this formula is valid for all sufficiently large p, it is1 easy to see
(because of periodicity and the appearance of the coefficients ;) that:

COROLLARY 6.17. For all sufficiently large 1, L"(fi;Q) = 0. L]
Thus:

COROLLARY 6.18. For all sufficiently large ..

n+vg

aoe (o, 'y L(f")) .

i=p+1

In particular, if f is also homotopy equivalence
vg —1 .
%1 (X5 Q) (y) = (0, — X L(f’)) .
i=0
7. MORE ON GROUPS OF TYPE %

We consider in more detail the special case of the mapping torus of a
homotopy equivalence of an aspherical complex.

Let H be an arbitrary group, let 6: H = H be an automorphism, and
let G be the semidirect product { H, t| tht—!=0(h) for all h € H). Write
Fix(8) = {h € H|0(h) = h} and write {x) for the cyclic subgroup generated
by x € G. Let Out(H) = Aut(H)/Inn(H) be the group of outer auto-
morphisms of H, i.e. the quotient of the group, Aut(H), of automorphisms
of H by the normal subgroup Inn(H) of inner automorphisms.

LEMMA 7.1. If O has infinite order in Out(H), then Z(G)
=Z(H)NnFix(9). If 6  has finite order r in Out(H), and
ho € H is such that 07(-) = hy(- )ho_l, there are two cases:

(1) No positive power of hy lies in Z(H)Fix(8). Then Z(G) = Z(H)
N Fix (0).
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(2) Some positive power of hy lies in Z(H)Fix(0). Let p be the
smallest positive integer such that h,” e Z(H)Fix(0) and let
X =uhy"t? where ueZ(H) is such that uh,? € Fix(0). Then
Z(G) = (Z(H) N Fix(8)) (x).

Proof. Suppose ht™ € Z(G) where h e H. Then h06™(h’) = h'0"(h)
for every h' € H, n € Z. In particular, taking 2"’ = 1 and n = 1, & € Fix(0).
Taking A’ arbitrary and n =1, 67(h’) = h~-'h'h for all A’ € H. Thus,
if 0 has infinite order in Out(H) and Aht” € Z(G) then m =0 and
heZ(H). So Z(G) C Z(H) n Fix(0), and the reverse inclusion is clear.

If 6 has finite order r in Out(H) and At™ € Z(G), the above argument
shows that m = vr for some veZ. So 0V (:)=h"1(-)h=hy(")h,",
implying hhy € Z(H). Conversely, it is straightforward to show that any AzV”
with # € Fix(0) n h, ' Z(H) lies in Z(G); hence: Z(G) = {ht'" € G|v € Z,
h e Fix(8) n hy, "Z(H)}. If no positive power of h, lies in Z(H)Fix(0)
then htv" € Z(G) if and only if v=0 and & € Z(H) n Fix(0). If some
positive power of A, lies in Z(H)Fix(6), let p and u be as above. Then
any ht'" € Z(G) can be written as (hhy"u-")(uhy,?t?)" where v = np
(observe that hhy?u-" e Z(H) n Fix(0)). [

ADDENDUM 7.2. If ©  has finite order r in Out(H) and
07(:) = ho(-)hy ' then

Z(G) ={ht"e G|veZ, heFix(8), hhje Z(H)} .

Proof. 1In case (1) of Lemma 7.1 this is clear, and in case (2) it is part
of the last proof. [

We are very grateful to Peter Neumann for providing us with the proof
of the following proposition which shows that (1) in Lemma 7.1 cannot occur.

PROPOSITION 7.3. Let 0:H—>H be an automorphism whose
image in Out(H) has finite order r, and let hyoe H be such that
07(+) = ho(:)hy'. Then hye Z(H)Fix(0).

Proof. Let 07(+) = ho(-)h,"'. Since 870 = 667, we have 0(h,) = kol
for some (e Z(H). For i=0,...,r— 1, let {;=0/({). The identity
ho = 87 (ho) implies that {oC; -+ {,_; = 1. Definex = A,C, ¢ %+ ¢,
Then

0(x) = AhCIC ™ - 2 G = hL TR L,
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(the second equality uses {,_; = ({oly -+ {,_») ! and the fact that the
group generated by 4, and Z(H) is abelian). Thus x € Fix(8) and so
hy € Z(H)Fix(0). [J

Remark. In [GN;3] we called an automorphism 6 as in Case (2) of
Lemma 7.1 special. In view of Proposition 7.3, we abandon this terminology
here.

Remark. The hypothesis of Proposition 7.3 yields a homomorphism
Z/rZ — Out(H) and hence a homomorphism Z/qZ — Out(H) for any
multiple g of r. There is a well-known obstruction O, € H3(Z/qZ, Z(H )
whose vanishing is equivalent to the existence of an extension 1 = H = FE
— 7Z./qZ — 1 with the given outer action. The content of Proposition 7.3
is that O, = 0. For more on this, see [GN4].

Combining Lemma 7.1 and Proposition 7.3, we have the following
structure theorem for the center of the semidirect product G:

THEOREM 7.4. If © has infinite order in Out(H), then Z(G)
=Z(H)nFix(8). If ©  has finite order r in Out(H) then
Z(G) = (Z(H) n Fix(0)){x) where x = uh,"t? , p is the smallest
positive integer dividing r such that h,” € Z(H)Fix(0) and ue Z(H)
is such that uh,” e Fix(0). [

Definition 7.5. Let 6:H— H be an automorphism whose image
in Out(H) has finite order r, and let &, € H be such that 87(-) = ho(-)h; .
The period of 0 is the integer ¢ = pr where p is the least positive integer
such #,” € Z(H)Fix(0).

Note that Proposition 7.3 guarantees that the period ¢ exists. It is
straightforward to show that ¢ depends only on the image of 6 in Out (H).
From Definition 7.5, we have that r, the order of 6 in Out(H), divides ¢
and by Proposition 7.3 ¢ divides r2.

PROPOSITION 7.6. Suppose 0:H — H has finite order m in
Aut(H). Then the period of 8 divides m.

Proof. Let hy € H be such that 87(+) = ho(+)hy ' where r is the order
of the image of 6 in Out(H). Then hje Z(H) C Z(H)Fix(0) where
n=m/r. U]

We give some sufficient conditions for the period of an automorphism
to coincide with its order in Out(H).
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PROPOSITION 7.7. Suppose ©:H — H has finite order r in Out(H),
the restriction of © to Z(H) is the identity, and Z(H) and has no
[-torsion for | dividing r. Then the period of 0 is r.

Proof. Let 07 () = ho(-)h, '. Using 676 = 60", we have o = h,0(h, '
€ Z(H). The restriction of 6 to Z(H) is the identity so ® = 6/(w)
= 0/(ho)0/*(hy') for any j. Thus " = ;2507 (he)0/* (kg ")
= hoe’(ho‘1 = 1. Since Z(H) has no [-torsion for / dividing r, o = 1.
Hence h, € Fix(9). [

A similar argument shows:

PROPOSITION 7.8. Suppose 0:H — H has finite odd order r in
Out(H) and the restriction of 0 to Z(H) is given by h— h-1. Then
the period of 0 is r. [

Let Z be a (not necessarily finite) K(H, 1) complex and let f:Z — Z
be a continuous map which induces 0 (after choosing a basepoint and
basepath). The homomorphism (p,)«: G —>Z of §6 is identified with
htm— —m. Since T = n,(%€(Z),id) = Z(G), the rotation degree homo-
morphism Py :Z(G) — Z is just the restriction of (ps).. We immediately
conclude from Theorem 7.4:

COROLLARY 7.9. There is an an exact sequence 0 — Z(H) n Fix(0)
— Z(G) 37 such that P.(Z(G)) = qZ where q=0 if 0 has
infinite order in Out(H) and q > 0 is the period of 9 Iif the image
of O has finite order in Out(H). [

Theorem 6.3 and the discussion preceding it yield:

PROPOSITION 7.10. The map [ is an eventually coherent periodic
homotopy idempotent of period q > 0 if and only if 0 has finite order
in Out(H) and has period q > 0. [

Now suppose H is of type ¥ so that we may take Z to be a finite
K(H,1) complex. Assume f is cellular. Then X = T(Z, f) is a finite
K (G, 1) complex. By (6.12) and Proposition 6.18,

THEOREM 7.11. If © has infinite order in Out(H) then y,;(G) = 0.
If © has finite order r in Out(H) and period q > 0 then




HIGHER EULER CHARACTERISTICS (I) 47

vg —1 _ ' r—1 .
%1 (G) (htve) = ( L L (=D A(ace(l/] LD —(@/nv X L(f’))

nz20 i=0

and

r—1 r—1
11 (G: Q) (hr') = (o, —(@/rv Y L(f")) = (a/rv ¥ LU

i=0 i=0

where h e Fix(0) n hy """ Z(H). [

Similarly, one can read off formulae for X;(G) from Theorem 6.14
and the rational version from Theorem 6.16.

8. OUTER AUTOMORPHISMS OF GROUPS OF TYPE .¥

In this section we apply the preceding theory to prove the following
theorem which relates the algebraic topology of an automorphism 6: H — H

of a group H of type ¥ such that 6 has finite order in Out(H) to the fixed
group of 6.

THEOREM 8.1. Let H be a group of type ¥ which has the Weak
Bass Property over Q. Suppose that 0:H — H is an automorphism
whose order in Out(H) is r > 1. If the sum of the Lefschetz numbers
YI_oL(0%) is non-zero then Z(H) n Fix(0) = (1).

Before proving this we note that the quantity Ef;éL(G") appearing
above has the following interpretation:

PROPOSITION 8.2. Y/_,L(8') is r times the Euler characteristic
of the 6-invariant part of the homology of H, Ii.e.,

r—1
Y, L(®)=r Y (—1)/rankker(id — 0;: H;(H) - H;(H)) .
i=0 j=0
Proof. By elementary linear algebra, for any square complex matrix A4

with A7 = I we have trace(Y/_,A4') = rdimker(/ — A). The conclusion
easily follows. [

Proof of Theorem 8.1. Let G be the semidirect product G = H X¢ T
where T is infinite cyclic. By Lemma 8.7, below, G also has the WBP
over Q. Applying Theorem 7.11 to G, we have that y,(G; Q) # 0. By
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