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numbers. For another application of Haefliger forms and their cohomology,
see [He].
An immediate corollary is the following theorem of Atiyah and Hirzebruch.

THEOREM 5.3 ([AH]). Let M be a compact connected, oriented manifold
which admits a Spin structure. If a compact connected Lie group acts non-
trivially on M, then the A genus of M is zero.

Theorem 5.2 is an application of the Lefschetz fixed point theorem for
complexes elliptic along the leaves of a foliated manifold. We explain the
classical Lefschetz theorem for elliptic complexes and give an outline of how
to prove it. The original proofs of this theorem relied on the fact that the
underlying manifold was compact. We outline a proof which does not rely on
that fact, and so can be generalized to complexes defined along the leaves of a
compact foliated manifold. Note that such leaves are in general not compact,
but the fact that they come from a foliation of a compact manifold means that
they have uniformly bounded geometry. It is this property which allows us to
prove the foliation version of the Lefschetz theorem. We then show how the
Lefschetz theorem leads to Theorem 5.2. Finally, we give a brief explanation
of a very general rigidity theorem conjectured by Witten and proven by Bott
and Taubes.

This paper is based on lectures given at the conference Actions Différen-
tiables de Groupes Compacts, Espaces d’Orbites et Classes Caractéristiques,
held at the Université des Sciences et Techniques du Languedoc in Montpellier
in January, 1994. The author wishes to thank the organizers, especially Daniel
Lehmann and Pierre Molino, for extending the invitation to him to speak at
the conference and for making his stay in Montpellier so pleasant.

1. CHARACTERISTIC CLASSES AND MULTIPLICATIVE SEQUENCES

All objects considered in this paper will be smooth. Let £ be an n
dimensional complex vector bundle over the real manifold M. Denote the
space of smooth sections of £ by C°°(E). A connection on E is a linear
map V : C®(E) — C*(T*"M ® E) satisfying

V- -0)=df@a+f-Vo

for any ¢ € C®°(E) and f € C°(M), the smooth functions on M. T*M
denotes the cotangent bundle of M.
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If o4,...,0, is a local basis of C*°(E) on an open set U, the local
connection form 6y (which is an n x n matrix of 1 forms) is defined by

n
=1

The local curvature form Qg is the n x n matrix of 2 forms
Qu =dfy — 0y NOy.
It is not difficult to show that if 71,...,7, is another local basis on the open

set V with 7, =) g;jo; on UNV, with g; € C*°(UNYV), thenon UNYV
=1

j
(1.1) Qu = gQyg~!
where g = [g;].

Now consider the local differential form on U, det(! — 5= Q). Because
of (1.1), this is actually a well defined global form on M. This form depends
only on V and it is closed, so it defines a cohomology class c(E), the total

Chern class of E, which actually takes values in the real de Rham cohomology
of M. This class depends only on E and we may write

c(E) =14 c1(E) + - + cp(E)

where ci(E) € H*(M,R) is the kth Chern class of E.
If £ is an n dimensional real vector bundle over M, it is easy to show
that ¢y 1(E ®r C) = 0, and the kth Pontrjagin class of E is defined to be

Pi(E) = (= 1fcu(E ®g C).
For more on this see [KN] and [M].

Let Q(z) = Y b;z' be a formal power series in z. Associated to () 1is the

i=0
multiplicative sequence K = (Ko, K1, K>,...) where each K; is a polynomial
in j indeterminants, K;(o1,...,0;) given as follows. Denote by Q; the degree

J part of Q(z1)...Q(z), where each z; has degree 1. Q); is a symmetric
polynomial in the z; so it can be written as a polynomial in the elementary
symmetric polynomials oy,...,0; in zi,...,z, ie.
Qj = Kj(o1,...,0)).
For example, if Q(z) = 14z, then Q; =z, .. .zj = 0; and Kj(oy,...,05) = 0.
O
If Q(z) is an even power series, Q(z) = S~ byiz?%, then the degree 2j
i=0
part of Q(z1)...Q(z;) can be written as a polynomial in the elementary

symmetric polynomials ~;,...,7; in z:f‘, e ,z}. We set K;(v1,...,7;) to be
this polynomial.
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DEFINITION 1.2. (a) Let E be an n dimensional complex vector bundle
over M and ()(z) a formal power series with associated multiplicative
sequence K = (Ko, Ki,...). The K genus of E, K(E) is the de Rham
cohomology class

KE) =) Ki(ci(E),...,¢E).
j=0

(as K;(c1(E),...,c;(E)) € H¥(M,R), this is actually a finite sum).

(b) Let E be an n dimensional real vector bundle over M and
Q(z) an even formal power series with associated multiplicative sequence

oo
K = (Ko,Ki,...). Then the K genus of E is K(E) = >_ K;(p1(E), ...,p;(E)).
j=0

K is called a multiplicative sequence because K(E| D E,) = K(E) - K(E»).

IMPORTANT EXAMPLES

1. Q@) =1+z. Then

Kz)=14ci(E)+cy(E)+---=c(E).
2. () = z/tanh(z), which is even and gives the L genus of Hirzebruch.

Recall that the signature Sign(M) of a compact oriented 4k dimensional
manifold M is the signature of the quadratic form on H*(M,R) given by

a,fr— [a- 3.
M

THEOREM 1.3 (Hirzebruch [H]).

Sign(M) / Li(pi(TM), ..., pe(TM))
M

where TM is the tangent bundle of M.

Thus Sign(M) is completely determined by the Pontrjagin classes of M.
3. Q)= z/(l —e7%), gives the Todd genus 7d.

Let M be a compact, complex n dimensional manifold and V a holomorphic
vector bundle over M. Recall the Dolbeault complex of V

an—l

0 — A%y 2% A0y 2, L ARy =5 0
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where A%9(V) is the space of differential forms on M of type 0,g with
coefficients in V. H9(M,V) = kernel Eq /image Eq_l and it is finite dimen-
sional (and isomorphic to H(M,O(V)) where O(V) is the sheaf of germs
of holomorphic sections of V).

A fundamental invariant of V is its Euler class

XM, V)= (=D)?dimHI(M, V).
g=0
The Riemann-Roch problem is to calculate this integer from topological
information about M and V. The solution is given as follows. Suppose

dimension V = k. % + .-+ % is symmetric in the z; so may be written
k

as a power series in oy,...,0x, i.e. Y e% =k+chi(o1) + chy(or,02) + - -
i=1

where

k
chi(01(1, -, 2), -5 0321, 5 5)) = szé/j!.
i=1
Set ch(V) = k + chy (c1(V)) + cha(c1(V), c2(V)) + - - - .

THEOREM 1.4 (The Riemann-Roch Theorem, [AS]).

(M, V) = / Td(TM) - ch(V).
M

Thus x(M,V) is completely determined by the Chern classes of M and V.

4. Q(z) = (z/2)/sinh(z/2) = z/ (¢¢/2 — ¢=%/?) is an even function and gives
the A genus.

Recall that Spin(n) is the simply connected double cover of SO(n). A Spin
structure on an oriented Riemannian manifold M of dimension n is a principal
Spin(n) bundle P over M and an isomorphism of oriented bundles

P X Spin(n) R" ~ TM.

Spin(n) has a complex representation space A of dimension 2". See [ABS],
[LM]. If n = 2k, A may be written as A = AT @ A~ where AT are
irreducible representations of dimension 2"7'. Set E*¥ = P x Spin(y AF .
The metric connection on M defines one on E = ET @® E—, denoted V.
The Dirac operator DT : C®(ET) — C*(E™) is defined as follows. Let
c: COO(T*M ® E) — C°°(E) be Clifford multiplication (we identify T*M
with TM using the metric on M). Then D = ¢ -V : C®(E) — C®(E) and
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D maps C®(ET) to C*®(E~) and vice-versa, since ¢ does. Thus we may
write

0 D™
1. —
0[5 5]
where DT : C®(E*) — C(ET). (See [AS] or [LM]). Now kerDt
and cokerDV(~ kerD~) are finite dimensional and the Spinor index
of M,

Spin(M) = dimker D™ — dim cokerD™ .
THEOREM 1.6 ([AS]). If M is a Spin manifold of dim 2k then
Spin(M) = / A(TM) .
M

In particular, if 2k = 2(4), then Spin(M) = 0 as /T(TM) involves only
the Pontrjagin classes of M and these occur only in dimensions = 0(4).

More generally, we may construct the twisted spinor complex. For
this, let F be a complex bundle over M with hermitian metric and
connection. Combining the connection on E with that on F we ob-
tain a connection on E ® F. Composing this with Clifford multi-
plication

c:C(ITMMQQEQRF) — C*(EQF)

we obtain the twisted Dirac operator Dp on E ® F. As before Dpg
interchanges ET ® F and E- ® F and we get the twisted Spin
complex

+
0— C¥(ET®F) 2 C¥(E- @ F) — 0.

The kernel and cokernel of Di are finite dimensional and the twisted spinor
index is
Spin(M, F) = dimker Df — dim coker D} .

THEOREM 1.7 ([AS]).

Spin(M, F) = / A(TM) - ch(F).
M
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