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(Note that Connes has also proven an index theorem for foliated manifolds,

(see [C]). As he works on the holonomy coverings of the leaves of F, his

theorem is related to ours as the L2 covering index theorem is related to

the ordinary index theorem.) If we take the codimension 0 foliation of M
which has one leaf (namely M), we recover the Atiyah-Singer Index Theorem

for these operators. In general, i.e. f ^ idM, T =/*, aj is the usual local

integrand (computed on the fixed point set in each leaf, not in M) given by
the Atiyah-Singer G Index Theorem. If we take the codimension 0 foliation,
we recover the Atiyah-Singer G Index Theorem and the Atiyah-Bott Lefschetz
Theorem for these operators.

5. Group Actions and the Lefschetz Theorem

Let F be an oriented 2k dimensional foliation of a compact, oriented,
Riemannian manifold M. Assume that F admits a Spin(2&) structure. That
is, there is a principal Spin (2k) bundle P over M and an isomorphism of
oriented bundles

P X Spin (2k)
R2A'

— TF

We may then construct the bundles E± P xSpin(2^ A±. The leafwise Dirac
operator D+ is constructed using the Riemannian structure on the leaves of
F which is induced from M.

Let G be a compact, connected Lie group acting by isometries on M,
taking each leaf of F to itself. G then acts on TF. We assume that G also
acts on P (commuting with the action of Spin(2k)) so that the induced action
on P x Spin (2D ~ TF is the given action on TF. G then acts on the bundles
E± and it commutes with the operator D+, i.e. G is a group of geometric
endomorphisms of the complex (E±,D+).

Recall the A genus defined in Section 1.

Definition 5.1. The A genus of F is the Haefliger zero form

A{F) J Ak/2(TF).
F

In particular, if k is odd, A(F) 0.

Note that we have defined A(F) as the zero th order part of f A(TF).
^ F

For an interpretation of the higher order terms of / A(TF), see [He].
F
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The Lefschetz Theorem for Foliations applied to the case / idM, T id

says that A(JF) is equal to the index of the leafwise Spin complex, which is

just L{I). The Connes Index Theorem [C] says that it is also equal to the

index of the holonomy covering leafwise Spin complex.
We now prove the theorem of the introduction, namely

THEOREM 5.2 ([HL2]). Let F be an oriented foliation of a compact
oriented manifold M and assume that F admits a Spin structure. If a compact
connected Lie group acts non-trivially on M as a group of isometries taking
each leaf of F to itself and preserving the Spin structure on F, then the A
genus of F is zero.

As a corollary, we have the well known result of Atiyah and Hirzebruch.

THEOREM 5.3 ([AH]). Let M be a compact connected oriented manifold
which admits a Spin structure. If a compact connected Lie group acts non-

trivially on M, then A(M) J A(TM) is zero.
M

Of course, this theorem and its proof were the inspiration for Theorem 5.2.

Now let G be a compact connected Lie group acting on M by isometries

taking each leaf of F to itself and preserving the Spin structure on F. We

quote two results from [HL2] and refer the reader to that paper for the

proofs. Note that in [HL 1] and [HL2], we assume that F admits a transverse

invariant measure. A careful reading of those papers shows that in fact we

may disregard the invariant transverse measure and consider the traces used

as taking values in the Haefliger zero forms of F and all the results remain

valid. See the remarks on this in [HL3].

LEMMA 5.4. The fixed point set of the action of G is a closed submanifold

of M which is transverse to F.

THEOREM 5.5. The Lefschetz number L(g) is a continuous function
on G.

Proof of Theorem 5.2. We may assume G S1 C. Let N be the

fixed point set of G, Na a connected component of TV, L a leaf of F and

y e NaHL. The normal bundle to Na flL in L at y can be written as ®Vj,
where Vy is a complex vector space and z £ G acts on VJy by multiplication
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by z"lj for some positive integer mj. It follows that the V7 are complex G

vector bundles on iV^flL.
Now let z G C, z ^ 1 and consider the function R(x,z) l/(l -ze~x). It

can be written as a formal power series in x whose coefficients are rational

functions in z having a pole only at z 1, and no pole at z oo. To see

this, write

1 oo oo

y>-)> £ (1 +1+r+? +
* k=0 k=0

- (z + 2z2 +3z3 + • • •

+ (z + 22z2 + 32z3 + • • • )x2/2!

OO

Set /0(z) 1 + z + z2 H 1/(1 - z), and for n > 1, set /n(z) ^ knzk.
k=\

Then (— l)w/„(z)/n! is the coefficient of x77 in i?(x, z) and it is obvious that

fl+1 (z) zfhiz). An induction argument then shows that /w(z) is a rational
function of z with a pole only at z 1 and no pole at z oo. By induction

we also have that zl^2fn(z) has a pole only at z 1 and, as it is ö(z ^2)
at z oo, it has no pole at z oo.

Now for fixed z / 1, set Q(x,z) z}l1e~xl2R(x^ z), which is a formal

power series in x. Denote the corresponding multiplicative sequence by

B(,z)= (5o( ,z),ßi(
Let z e G S1be a topological generator (i.e. generates a dense

subgroup). Then the fixed point set of z is N and z acts on V7 by multiplication
by z'nj. Let dj be the complex dimension of V7 and set

B(V\z) Bdj(V\zmj).

B(Vj,z) is a cohomology class on iVanL whose coefficients are rational
functions of z having poles only at roots of unity and no pole at z oo. Set

j
As B(VJ,z) contains the factor (zn,jd01/2.contains the factor (zd)l/2,
d X. mjdj, and so is defined only up to sign. The choice of sign is determined
as in [AH], page 21.

The Riemannian connection on TMovern preserves the bundles
V' and is a complex connection on each Using this connection and the
Riemannian connection on T(NanL), we may construct the differential form



290 J. L. HEITSCH

w^(z) on NaHL which represents the cohomology class A(NaCiL)B(NaDL, z).
Then w^(z) is the form a^ given in the foliation Lefschetz theorem for z

acting on the leafwise Spin complex, and it defines a smooth form wa(z) on

Na. Thus for z G S1, z not a root of unity, we have

Now notice that the right side of this equation defines a function A(F, z) on
the complex plane with values in the Haefliger forms of F. Also note that

A(F, z) has poles only at roots of unity and no pole at z oo, since wa(z)
has poles only at roots of unity and no pole at z — oo. Because of the factor
of (z^)1/2, A(F, 0) 0. For z G S1, z not a root of unity, A(F,z) — L(z).
But L(z) is defined for all z G S1 and by Theorem 5.5 it is continuous on
Sl. Thus A(F, z) has no poles at all. Since it is analytic and bounded, it is

constant and hence is identically zero. Therefore L(z) 0 for all z G S1, but

L(l) A(F) so we are done.

The compactness of G is essential, as in [HL2], we give an example of
an infinite discrete group acting by leaf preserving isometries on a compact
oriented foliated manifold M, F and G preserves a Spin structure on F. The

foliation F admits an invariant transverse measure which defines a map from
the Haefliger zero forms of F to C. The image of A(F) under this map is

non-zero, so A(F) ^ 0

In 1986, Witten [W] predicted rigidity theorems for the indices of certain

elliptic operators on manifolds with Sl actions. The genesis for Witten's

conjecture was his study of the Dirac operator on the free loop space CM (an

infinite dimensional manifold) of a Spin manifold M. CM admits a natural Sl

action whose fixed point set is diffeomorphic to M. The sequences of bundles

R(q) and R'(q) described below were derived from the normal bundle of M
in CM and from the formal analogue on CM of the fixed point formula for
the Dirac operator in the finite dimensional case.

Let D : C°°(£j) —>• C00^) be an elliptic operator on a compact manifold

M and suppose M admits an Sl action preserving D. Then as noted above,

Index (D) is a virtual Sl module and has a decomposition into a finite sum

of irreducible complex one dimensional representations

6. The Rigidity Theorem of Witten
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