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IN DEFENSE OF EULER

by Hans Samelson 1

Can Euler be in need of defense Well, yes, he is ; and it is in the

matter of the famous Descartes-Euler theorem, which states that for a (say,

convex) bounded polyhedron in 3-space the combination v — e + / of the

numbers v, e, and / of vertices, edges, and faces of the polyhedron (the

"Euler characteristic" of the polyhedron) equals 2. (He writes the equation as

S + H A + 2.) The "natural" vertices (extreme points), edges, and faces of
the polyhedron are understood, although artificial edges — diagonals — occur

implicitly.)
He needs defense on two points, one minor and the other major, to be

taken up below.

He published two papers on the subject. In the first one, [2], he states the

formula, checks it for a number of cases, and says that he has never found a

counter example and that he believes it to be true. (He also proves an addition
theorem for two polyhedra that have a face in common, and draws many
conclusions from the formula.)

In the second one, [3], which appeared right after the first one, he states

the formula again and presents a proof for it. We are mainly concerned with
the second paper.

First the minor point : It is often overlooked in the literature that he actually
stated two theorems. The first one is his formula for the characteristic described
above. The second one introduces the "angle sum", say u, the sum of all the

angles of all the faces at their vertices, and states the relation cu — 2ttv — 47r.

In the first paper he derives the second theorem from the first. His argument
(after rewriting it in present day terminology) reads as follows : One evaluates

u by first summing the angles of each face. Let n be the number of sides of
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a given face. The sum of the angles at the vertices of the face is well known
to be (n — 2)TT. Noting that the sum of the n-values for the various faces is

2e (since every edge is a side of two faces), one gets for the sum of all these

expressions, i.e. for cu, the value 2ne — 2irf. This clearly gives his result;
in fact, the argument makes the two theorems equivalent, although he doesn't

say so.

In the second paper he goes on to say explicitly that the two theorems

are equivalent : If either one is true, so is the other one, so that one has to

prove only one of them. But then he proceeds to not give the argument for
the equivalence, and says that he has decided, on second thought, to prove
the two theorems independently. (He doesn't say so, but his two proofs are
almost identical — not too surprising in view of the easy equivalence.)

(Unbeknownst to Euler and the whole contemporary mathematical world,
the second theorem had been in fact already developed and proved, after a

fashion, by Descartes in a note that survives in the form of a handwritten

copy by G. W. Leibniz (see, e.g., [8]).)
Is is interesting to compare the two theorems. Although they are so easily

transformed into each other, they are quite different in nature. The first one is

combinatorial and can be considered as the beginning of algebraic topology.
The second one uses the local geometry and can (particularly in Descartes'

approach) be thought of as a (polyhedral) version of the Gauss-Bonnet theorem.

The major point of need for defense referred to above has to do with
Euler's proof of these theorems. It is generally agreed that his proof is wrong
— not only because he failed to notice or state that the theorem applies only
to surfaces of genus 0, (piecewise linearly-) homeomorphic to the 2-sphere or
the tetrahedron, but mainly because something is wrong with the central step
in his argument (see Lebesgue's detailed discussion in [5] ; see also [4]).

My intent here is to show that, although this is indeed so, a minor
modification, suggested by what we have learned in the mean time, makes

the argument into a very good proof for convex polyhedra. The modification
consists in making, at a certain point where Euler says to make an arbitrary
choice from a given finite set of possibilities, a specific, well defined, and in
fact quite obvious, choice which yields again a convex polyhedron. (Lebesgue
in [5] develops a very general proof starting from Euler's approach by other

considerations.) [After writing this note, I looked once more at the book [7]

by J.-C. Pont and found on p. 18, lines 20-23, the statement that Euler's proof
would go through, for convex polyhedra, if a convex choice could be shown

to exist. Thus my contribution here consists in noting that this choice indeed

exists.]
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(In passing we note a multilingual curiosity : The person who first stated

in print that Euler's formula does not hold for all polyhedra was Lhuilier ([6])
whose name translates into English as Oiler.)

His proof is inductive, on the number v of vertices; the main idea is,

given a polyhedron V, to "cut off" a part of V containing a chosen vertex O

in such a way that the remaining polyhedron V' has exactly all the vertices

of V except O as its vertices and to compare the Euler characteristics and

the angle sums uj of the two polyhedra. In his notation, let A. B,.... F be the

other vertices on the edges going out from O, in the order going around the

vertex. Although the circuit A... FA, which we call T, may not be plane, we
can and do introduce enough diagonals like AC to form triangles which will
form a surface bounded by the circuit. Over each such triangle there stands

a tetrahedron with additional vertex O. We now remove these tetrahedra one

by one, first OABC, then the one whose base has AC as one edge, etc., until
all have been cut off. (Euler is quite graphic about this : Put a knife at B and

cut all the way to AC ; then put your knife at O and cut all the way down to
AC, so that the pyramid OABC comes off.) This leaves us with a polyhedron
V, with one vertex less than the original one, with the triangles OAB etc.

replaced by the triangles ABC etc. As Euler notes, some of the triangles
like ABC may be coplanar and adjacent to each other and thus combine to
form larger faces. Very elementary counting arguments show that the Euler
characteristic v — e + / has not changed in the process and that the angle
sum uj has decreased by 2tt and at the same time the number v has also
decreased by 1. By iteration we end up with a tetrahedron, for which the
Euler formula is true; and so both theorems are proved.

Except that there is trouble : If we allow general, not necessarily convex,
polyhedra (of genus 0), then, in the above notation, the plane of a triangle
like ABC might contain the point O. Or, even if the vertex cone at O is
convex, some other part of the polyhedron might pass through the surface
formed by the triangles ABC etc.; Euler's procedure then would produce
a "polyhedron with self-intersections". One might be able to continue with
such polyhedra, but one would certainly need the idea of of immersion of an
abstract polyhedron.

A particularly subtle form of this difficulty is what was pointed out by
Lebesgue ([4], p. 329) (see also [3]) : V' may not be a polyhedron in the usual
sense, but consist of several polyhedra attached to each other along edges or
vertices so that the "surface" is no more piecewise linearly equivalent to the
2-sphere (this happens if one of Euler's new diagonals is already an edge
of the original polyhedron V)\ and what one is left with at the end of the
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iteration may fail to be a tetrahedron. Something like this must in fact happen,

if the original polyhedron is not of genus 0. There is even trouble with the

counting argument.

Many these difficulties seem to have to do with the lack of convexity. Euler

never said anything about his polyhedra being convex or not. (He was familiar
with the terms convex and concave, although with a somewhat different sense ;

at one point in the first paper he divides solids into two classes : those with
plane faces and those with convex or concave faces.) It has been suggested
that he always had convex polyhedra in mind, without being aware of it.

Certainly all his figures in his text are of convex polyhedra, although in his

auxiliary constructions he definitely uses non-convex ones, as we saw above.

So let us work with a convex polyhedron (boundary of a polyhedral convex
body, the latter being a finite intersection of closed half spaces that happens
to be compact with non-empty interior). Then at least there is no trouble at

the vertex O of V ; Euler's construction applies and there will be no self-
intersections. But now the new polyhedron V' may turn out to be non-convex
(the surface formed by the triangles ABC etc., may have "wrinkles" in it);
so we are back to Square One.

In fact, Euler was more or less aware of this : He noted that his process
of cutting off a corner was not unique, because one can run the diagonals for
the circuit A... FA in many different ways (unless the vertex O is of order
three — exactly three edges going out from it). He shows explicitly, with a

figure, the case of an O of order four, where there are two possibilities for
a diagonal. He doesn't say so, but one of these choices gives a non-convex
polyhedron after his process (unless the four points A,Z?, C, D are coplanar).

This is how far things are usually taken, implying that Euler's "proof" is

hopelessly faulty. But can he really have been that wrong
It turns out there is a fairly simple way out of this trouble; the idea is

to make a (unique) choice of diagonals that results in a convex V'. (As
mentioned above, J.-C. Pont in [7] points out that Euler's proof would go
through if one could arrange matters so that V' is convex.) Namely one

should define V' as the boundary of the convex hull of all the vertices of
V except for the chosen vertex O. (The fact that Euler didn't think of this

choice suggests that he was not thinking of convex polyhedra. But then again
the notion of convex hull probably was not around in his time.)

Now it could happen that the vertices of V, except for <9, all lie in a

plane, so that V reduces to a plane convex polygon, with V the cone over

it from O. There is no difficulty with Euler's formula in that case. (Use the

second version of the theorem. Each vertex interior to the base contributes 27t
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to the angle sum cj, so one can erase those vertices, as well as the interioi

edges. And then the result follows from the familiar fact that the sum of the

angles of a plane convex n-gon is (n — 2) tt.)
In the "general" case, if V is the boundary of a genuine convex body, then

clearly the edges AB etc. appear as edges of V', and the circuit T — A... FA

divides the surface of V! into an old part, say X, "below" and a new part, say

X7, "above" the circuit, as seen from O. The old part X is the intersection

of V and V'.
Note that all inner edges of the new part are diagonals in Euler's sense;

there are no new vertices. To establish the theorem, we have to compare the

new part X7 with the part of V consisting of the cone from O over T, which

we call À ; we have to show that the contributions of X7 and À to the Euler

characteristic are equal; for the other version of the theorem we must show

that the angle sum for À is greater by 2tt than that of X7, since clearly À

has one more vertex than X7.

For the first part we note that v — e +/ for À is clearly 1 (there are as

many vertices as edges on T ; there are as many edges as faces on the lateral

part of À ; and there is O). For X7 we start by cutting it along some diagonal
into two parts of the same general nature, and note that the characteristic of X7

equals the sum of the characteristics of the two parts, minus the characteristic

of the common diagonal (which appears in both parts); the latter equals 1

(two vertices and one edge). (The "Mayer-Vietoris" relation holds already
with "characteristic" replaced by v or e or /.) By induction we can assume
that the characteristics of the two parts are one (the induction starts with the

case of no diagonal, i.e., an ordinary convex polygon); and so that of X7 is
also 1.

To make the argument clearer, we could introduce a plane that cuts the

cone spanned by A transversally, project X7 onto that plane from O, and

replace X7 and A by base and lateral side of the pyramid thus formed, with
the obvious one-to-one correspondences of vertices, edges, and faces.

For the second version of the theorem we can again use the pyramid
just introduced instead of the original figure; angles change under projection,
but for any polygonal face the angle sum is the same before and after the
projection, since it is determined by the number of edges of the face. In going
from the lateral part to the base, the number of vertices goes down by 1, since
O disappears. The angle sum of the lateral part is wr, with n the number
of vertices on the circuit T. The angle sum for the base is well known to be
(n -2)?r, as the sum of the interior angles of a convex polygon of n sides.
Thus the angle sum goes down by 2n on going from A to X7.
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Thus the characteristic and the difference co — 2itv remain constant when

one "cuts off a corner". And finally, since V' is again convex, we can now
iterate and end up with a tetrahedron, for which both theorems are clear. So

the proofs go through in the convex case, and Euler was on the right track
after all.

A last comment on convexity : In the figures in Euler's two papers all
the vertex cones appear to be convex. (The vertex cone of a vertex V of
a polyhedron V consists of all rays from V through points of V "near"

V.) This property would make the whole polyhedron convex (see Bonnesen-

Fenchel [1], p. 3, "Konvexität im Kleinen"). Of course this wasn't known in
Euler's time (nor was the question even raised); but he might have felt that

it was obvious.
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