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398 D. TALL

This principle will help students to become autonomous thinkers, and
to become responsible for their own learning. Dubinsky & Leron use the
programming language ISETL (Interactive SET Language) to get the students
to engage in programming mathematical constructs in group theory and ring
theory. Because the programming language is close to mathematical notation,
it enables the students to construct abstract concepts like cosets and Lagrange’s
theorem in a concrete manner, showing considerable success in what is
traditionally a difficult area.

A possible difference between this learning and the thinking of for-
mal mathematicians is intimated by Thurston (1994, p. 167) who suggests
that

...as new batches of mathematicians learn about the subject they
tend to interpret what they read and hear more literally, so that the

more easily recorded and communicated formalism and machinery tend
to gradually take over from other modes of thinking.

Reflective thinking on these matters is an indispensible part of research
mathematics. But it is rarely taught to undergraduates, where the focus is on
content of lecture courses. At the school level problem-solving is a central part
of the NCTM standards in the USA, and mathematical investigations are part
of the British mathematics curriculum. Perhaps now is the time to introduce
the study of mathematical thinking itself into university courses.

Of the three cognitive principles mentioned, the first essentially warns that
those who have reached a greater level of maturity may have forgotten how
they learnt. We therefore consider the other two principles in detail, first the
nature of mathematical compression, and then move on to the process of how
to teach reflective mathematical thinking.

THE COMPRESSION OF KNOWLEDGE IN MATHEMATICS

There are various methods of compression of knowledge in mathematics,
including :

(1) representing information visually (a picture is worth a thousand words),
(2) using symbols to represent information compactly,

(3) if a process is too long to fit in the focus of attention, practise can make
it routine so that it no longer requires much conscious thought.
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Method (1) is used by many (but not all) mathematicians. In his classic
study of how mathematicians do research, Hadamard explained that, with
certain exceptions :

... mathematicians born or resident in America, whom I asked,

... practically all... — contrary to what occasional inquiries had suggested

to Galton as to the man in the street — avoid not only the use of mental

words, but also, just as I do, the mental use of algebraic or any other
precise signs; also as in my case, they use vague images.

(Hadamard, 1945, 83-84)

Einstein reported that visual, kinetic and other imagery proved useful in
his research :

The psychical entities which seem to serve as elements in thought are
certain signs and more or less clear images which can be ‘“voluntarily”
reproduced and combined. ... The above mentioned elements are in my
case, of visual and some of muscular type. Conventional words or other
signs have to be sought for laboriously only in a secondary stage, when
the mentioned associative play is sufficiently established and can be
reproduced at will.

(Albert Einstein, in a letter to Hadamard, 1945, 142-3)

In recent interviews with research mathematicians, Sfard (1994) found
exactly the same phenomena. One mathematician reported to her:

“To understand a new concept I must create an appropriate
metaphor. A personification. Or a spatial metaphor. A metaphor of
structure. Only then I can answer questions, solve problems. I may
even be able then to perform some manipulations on the concept.
Only when I have the metaphor. Without the metaphor I just can’t
do it’

‘In the structure [which he created in his mind in the attempt to
understand], there are spatial elements. Many of them. It’s strange, but
the truth is that my student also has noticed it... a great many spatial
elements. And we are dealing here with the most abstract things one
can think about! Things that have nothing to do with geometry, [that
are] devoid of anything physical... The way we think is always by
means of something spatial... Like in ‘ This concept is above this one’
or ‘Let’s move along this axis or along the other one’. There are no
axes in the problem, and still...’ (Sfard, 1994)
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Mathematicians may use images in this way to relate ideas in their
highly developed cognitive structure. Such thought experiments are highly
advantageous in contemplating possible relationships before the question of
logical proof arises. But it is necessary, as Hadamard said, to be “guided by
images without being enslaved by them” (ibid, p. 88).

Students do not have such a developed cognitive structure and instead
they may be deceived by their imagery. They already have their own concept
images developed through previous experience (Tall & Vinner, 1981). Such
imagery is often in conflict with the formal theory (see Tall, 1991a, 1992
for surveys). Even though concepts are given formal definitions in university
mathematics, students may appeal to this imagery and infer theorems through
the use of their own thought experiments. For instance, “continuous” might
carry the inference of something “going on without a break™, so a continuous
function must clearly pass through all intermediate values, and must also be
bounded and attain its bounds. For a proof by thought experiment, just imagine
a picture and see.

VISUALISING MATHEMATICAL CONCEPTS

Although the private images of mathematicians may be difficult to com-
municate, public images, such as diagrams and graphs enable a great deal
of information to be embodied in a single figure. Software which allows
visual representations to be controlled by the user, to see dynamic rela-
tionships make even more powerful use of visualisation. Having been fas-
cinated by the non-standard idea that a differentiable function infinitely
magnified looks like a straight line (within infinitesimals), I wrote com-
puter programs to look at computer drawn graphs under high magnifi-
cation (figure 1). This allows a visual approach to the notion of differ-
entiability. By using fractals such as the Takagi function (Takagi, 1903)
— rechristened the “blancmange” function because of its similarity to
a wobbly English milk jelly — functions could be drawn which never
magnified to look straight (figure 2), hence intimating the notion of a
nowhere differentiable function. Indeed, a visual proof of this argument
is easy to give (Tall, 1982). By taking a small version of the blanc-
mange function bl(x), say w(x) = bI(1000x)/1000, for any differentiable
function f(x), consider the graph of f(x) + w(x). This looks the same on
the computer screen to a normal magnification, but under high magnification
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