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standard geometric g—1 simplex (¢ = Q-rank of G). If A = {ay,... a4} and
A—0O={a;,...,a} with 1 <ip <...<ig < g, we define the boundary
simplex A(®) of A as A(®) = [e;y,. . ,e;,]. Let P be a minimal parabolic
Q-subgroup of G and let the set I'\G(Q)/P(Q) be 1‘epresemed by {q1,---Gm}
(see Proposition 2.1). We take m copies N = [el, ... ,eh] of A with faces
/N (®) corresponding to ©. The corresponding homeomorphlsms A~ /N are
denoted by ¢;. The simplicial complex I'\|7|, which provides a geometric
realization of the quotient of the Tits building of G modulo I', is constructed
from the simplices A!,...,A™ through the following incidence relations:

Two simplices A/ and A are pasted together along the faces /(@) and
A!(®) by the homeomorphism ¢; o gpl_l | Ay if and only if

I'qiPo(Q) = I'q/Pe(Q).

We remark that the points of I'\|7| are in one-to-one correspondence with
equivalence classes of geodesic rays in the locally symmetric space V = X
(see [Hat], [L1] and [IM]).

2.2. AN EXHAUSTION BY POLYHEDRA

We index the “edges” of the Weyl chamber at (or equivalently of AT x)
by simple (Q-roots. More precisely, the edges of At -x, are given by geodesic
rays cqo(f) = exp(tH,) - xo where H, € at, ||Hy|| = 1 and B(H,) = 0
for 6 # a (o, € A). We further write ¢, for the edges qrapc, of
the chambers ¢;C in the fundamental set € (see Section 2.1 for the notation).
If a geodesic ray ¢ represents a point z € 0,X we write z = c(c0). The
group G act naturally on 0,.X through g-c(c0) = (g-¢)(00). For every o € A
the isotropy group of c,(co) under that action coincides with the (maximal)
parabolic subgroups Pp_g,y introduced above (see [L2] Lemma 1.2).

To a geodesic ray c: [0,00) — X (parametrized by arc-length) which
represents a point z in the ideal boundary 0..X of X is associated a Busemann
function on X at z given by

he: X — R 5 he(x) = lim [d(x,c(n) —1].

The level sets of a Busemann function are horospheres, which foliate the
symmetric space. We denote the Busemann functions which correspond to the
rays Cro, by hy.. Note that Ay, (cka(t)) tends to —oo if the arc-length 7 of
the geodesic ¢, tends to +co.

In contrast to an exact fundamental domain there are not only points on the
boundary of a fundamental set Q but possibly also interior points which are
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identified under the action of I". However, there is only a finite set of isometries
v €' with yQ N Q # @. Furthermore it suffices to look at the (finite)
set D of those 7 for which this intersection is not relatively compact in
X (all other intersections are contained in some compact subset of Q). It
turns out that every v € D has the crucial property that there are indices
i,j such that qj_lfyql- 1s parabolic i.e. fixes at least one point in the ideal
boundary O..X (see [L.2] Proposition 2.2). Then for every v € D there are
indices i,j,« such the family of horospheres of the form hy'(s),s € R, is
mapped 1sometrically to the family hj;l(s),s € R (see [L2] Lemma 3.2).
These identifications correspond to the incidence relations described above in
the construction of the simplicial complex I'\|7|. (To see this one has to
use the fact that the Siegel set at infinity 0u(g;S) is canonically isomorphic
to AN = [e]i, e ,eé].) The main technical step is then to renormalize the
Busemann functions as A, = hiq —s;; (for certain constants s;;) in such a way
that each v € D maps a horosphere of some given level, say {f, = s}, to
another one, {h;, = s}, of the same level s (see [L2] Lemma 3.4). This fact
finally allows us to truncate the constituents ¢;S of the fundamental set 2 by
removing the open horoballs Bi,(s) := {hi, < —74s} (for certain constants
To and for s > 0 sufficiently large). The above construction guarantees
that the truncated fundamental set Q(s) := Ulm:1 q;S(s) of Q is relatively
compact in X and invariant under the (restricted) action of I'. Moreover
for s sufficiently large the I'-invariant “core” X(s) := I'"-Q(s) can be written
as the complement in X of a union of (countably many) open horoballs:
Xs)=X-T-UL, Uaea Bia(s) (see [L3] Theorem 3.6). These horoballs are
disjoint if and only if T" is an arithmetic subgroup of a (Q-rank 1 group. The
projection 7 : X — V maps X(s) to a compact submanifold with corners
V(s) of V whose fundamental group is isomorphic to I'. The “centers” of the
projected horoballs in 0.,V are in bijection with the vertices of I"\|7|. The
exhaustion function % is eventually defined in such a way that its level sets
coincide with the boundaries 0V(s). We summarize the result in the following
proposition (see [L2] Theorem 4.2).

PROPOSITION 2.2. Let X be a Riemannian symmetric space of noncompact
type and R-rank > 2 and let 1" be an irreducible, torsion-free, non-
uniform lattice in the group of isometries of X. On the locally symmetric
space 'V = I'\X there exists a piecewise real analytic exhaustion function
h:V — [0,00) such that, for each s > 0, the sublevel set V(s):=1h < s}
is a Riemannian polyhedron in V. Moreover the level sets {h = s} = 9V(s)
consist of projections of pieces of horospheres in X.
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Each polyhedron V(s) is homotopically equivalent to V. More precisely
we have

PROPOSITION 2.3. For every sufficiently large s the locally symmetric
space V is homeomorphic to the interior of the polyhedron V(s) in V, and
V(s) is a strong deformation retract of V.

For the proof see [L3], Theorems 5.2 and 5.5.

3. ESTIMATES FOR THE BOUNDARY SUBPOLYHEDRA

We wish to apply Proposition 1.1 to the polyhedra V(s) in the above
exhaustion and then take the limit for s — oco. To that end we need estimates
for the second fundamental forms and the volumes of the (lower dimensional)
boundary polyhedra.

For each Siegel set S; := ¢;S which is part of the fundamental set Q we
have its truncated part '

Si(s) =8 — | (Bial®) N ) -
aEA
The top dimensional boundary faces of Si(s) in &; (resp. of Q(s) in Q)
are subsets of horospheres :

Hia(s) == {75 'hia = =5} N Si(s) , a€A.

The “horospherical” pieces H;,(s) together with their I -translates form the
boundary of the manifold with corners X(s) in X. For any nonempty subset ©
of A we set
Hio(s) := ) Hials) C Si(s).
acl

The various boundary subpolyhedra of V(s) are then unions of projections of
the pieces H;o(s) under the canonical projection 7 : X — V. More precisely,
as explained in Section 2, for any subset ® C A, we have the equivalence
relation on the set [ = {1,... ,m}

j~el if and only if T'q;Pe = I'q,Pe

(the g; are as in Proposition 2.1). This relation ~g induces a par-
tition, [(©), of the set I whose components will be denoted by E. Let
n = dimX = dimV, let k be the cardinality of © and let E ¢ I(0).
Then Vg_k(s) = W(U,EE Hi@(s)) is a (n — k)-dimensional boundary poly-
hedron of V(s); and moreover, any boundary polyhedron arises in this way
(see [L3] §4).
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