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3. Osculating indicatrices and Minkowski caustic

Consider the curve J c R2 centrally symmetric to the indicatrix I with
respect to the origin, and coorient it inwards. Since I is the time-1 front of
the origin, the time-1 map i of the geodesic flow takes the foot points of
all the cooriented contact elements of J to the origin. If the curve J is a

source of light in our anisotropic Minkowski plane then light from all points
of J focuses at the origin in unit time.

Let 7 be a nonparametrized closed strictly convex curve in Minkowski
plane, cooriented inwards. For every point x G 7 there exists a unique curve

/(a), homothetic to J (that is, obtained from / by a dilation with a positive
coefficient and a parallel translation) which is second order tangent to 7
at x.

Definitions. Call J(x) the osculating indicatrix of 7 at x. The coefficient

r(x) of the dilation that takes J to J(x) is called the (Minkowski) curvature
radius of 7 at x. The center of J(x), i.e., the image of the origin under

the homothety that takes J to /(a), is called the (Minkowski) center of
curvature of 7 at x. A point x G 7 is called a (Minkowski) vertex if the

osculating indicatrix is third order tangent to 7 at a. Call the envelope T of
the Minkowski normals to 7 its (Minkowski) caustic.

Remark. The curvature radius at a G 7 is the focusing time for light,
propagating from a small piece of 7 around a in the direction of the

coorientation. This time is positive if the coorientation vectors point to the

convex side of the curve, and negative otherwise.

If the metric is Euclidean all these notions coincide with the usual ones,

e.g., the osculating indicatrix is the osculating circle, etc. We list below a

number of properties of osculating circles and Euclidean caustics subject to a

generalization in the Minkowski setting.

1) The caustic of a curve is the locus of its centers of curvature.

2) A vertex of a curve corresponds to a singularity of its caustic.

3) A vertex is an extremum of the curvature radius.

4) The caustic of a generic curve is a piecewise smooth curve with an even

number of cusps and without inflection points.

5) If a caustic is bounded then the alternating sum of the lengths of its smooth

pieces equals zero.
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6) A curve 7 is described by the free end of a stretched string developing
from its caustic T.

7) (Kneser's theorem). The osculating circles of an arc of a curve, free from
vertices, are pairwise disjoint and lie one inside the other.

In the case of Minkowski geometry these properties still make sense (using
the above definitions) except for 5) and 6) which require an explanation because

the Minkowski length of a curve depends on its orientation.

Give the normals of 7 the inward orientation; then every smooth piece
of T gets an orientation too. The length of a smooth oriented piece of T is

understood to be its length in Minkowski geometry. In this way property 5)
makes sense — see Figure 1.

Figure 1

To explain property 6) consider a smooth arc of the caustic, oriented as
above, and let A and B be two of its points such that A precedes B on the
arc. Consider the tangent segments to T at A and B which are normals to 7,
oriented "from 7". Let r and R be their respective Minkowski lengths and
L be the Minkowski length of the arc AB of the caustic. Property 6) asserts
that R — r L — see Figure 2.
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B B

Various statements of the next theorem can be found (in an explicit or
an implicit form) in the papers on plane Minkowski and relative geometry,
mentioned in the References. I have not seen an approach to the proof via
contact geometry in the literature.

THEOREM 3.1. The properties l)-7) hold true in the Minkowski setting.

Proof. As before, H denotes the Hamiltonian function associated with
the Minkowski metric, S H~l{1) C T*R2 and tt : S —>• R2 is the projection.
Let 7 be the lift of the cooriented curve 7 to S (considered as the space of
cooriented contact elements of the plane), and let Z C S be the cylinder that
consists of the trajectories of the Hamiltonian vector field £ through 7. Denote

by r C Z the curve consisting of points at which the rank of the projection
7r|z is less than 2. Thus F is the set of points at which the fibers of tt are

tangent to Z. Since the trajectories of £ project diffeomorphically to the plane
the rank of tt\z equals 1 along T. The curve F projects to the caustic F.

To prove property 1), consider the osculating indicatrix /(x) at x G 7,
cooriented inwards. Then J(x) C S is tangent to 7 at point x, the cooriented

contact element of 7 at 1. Let r(x) be the curvature radius of 7 at 1. Then

4>r(x){J(x)) is a fiber of it. Therefore a fiber of 7r is tangent to the curve

fr(x)(7) C Z, and hence fr(X)(x) G F. It remains to note that tt((/^(x)) is

the center of curvature of 7 at x.
Likewise, if x G 7 is a vertex then F is tangent to the curve (/>r(x) (/(x)) at

point fr(X)(x). Therefore F is tangent to a fiber of tt, so F has a singularity at

the respective center of curvature. Property 2) follows. It follows also fiiat the

singularities of the caustic are the singularities of the projection tt : F —> F ;

the curve F is smooth.
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Next, note that an orientation of 7 gives T a coorientation. Give T an

orientation; then the pair (orienting vector, coorienting vector) is either a

positive or a negative frame along each smooth piece of T. The positive and

negative pieces alternate, so the number of cusps is even.

Consider the space of oriented lines in the plane (topologically, the

cylinder); the tangent lines to the caustic constitute a curve a in this space.

The family of Minkowski normals to 7 being smooth, the curve a is smooth

as well. An inflection of T would correspond to a singularity of a. Thus

r is inflection free, and property 4) follows. Note that an inflection of F

corresponds to the tangency between T and a trajectory of the field £.

Therefore T is transverse to £.
Vertices correspond to the stationary osculating circles, therefore they are

extrema of the curvature radius. Conversely, consider a critical value of the

curvature radius at x G 7, and assume that the caustic is smooth at the

corresponding curvature center. Then the direction of T is parallel to the

tangent line to 7 at x. However the tangent line to T is the Minkowski
normal to 7 at x which is transverse to 7. Property 3) follows.

One may use the Minkowski length of the tangent segment to T from 7
that is, the curvature radius r, as a local parameter on a smooth oriented piece
of the caustic. The velocity vector dT/dr at a point of T is the projection
under dir of the vector £ at the corresponding point of T. Therefore the

vector dT/dr belongs to the indicatrix, and the parameterization T(r) is by
arc-length. Property 6) follows. Property 5) is obtained from 6 by summation

over smooth pieces of the caustic.

Equivalently, the argument from the preceding paragraph means that the

Minkowski length of a smooth arc 6 of the caustic, oriented as above, equals
the integral of the contact form À over the lifted arc 6 C T. Likewise, r and
R are the respective integrals of À over the trajectory segments of the field £.

Since i^dX 0, the integral of dX over the quadrilaterals in Z, bounded

by the trajectories of £ and the curves 6 and 7, vanishes. Applying Stokes'
theorem and taking into account that À 0 on 7, the equality L — R + r 0

follows.
To prove property 7), the Kneser theorem, assume that two osculating

indicatrices intersect at some point C. Let A and B be the respective centers
of curvature such that A precedes B on the oriented smooth piece of the
caustic, and let r and R be the corresponding curvature radii. Then the length
of the oriented segments CA and CB equal r and R, respectively. By property
6) the Minkowski length of the arc AB equals R - r, and this violates the
triangle inequality — see Figure 3.
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A

Figure 3

Remark. The definitions given at the beginning of this section extend to

complete Finsler metrics without conjugate points. Properties 1) - 7) hold in
this case as well, and the proof goes through without change.

Returning to the situation of the Introduction one sees that Theorem
0.1 is the 4-vertex theorem in the Minkowski geometry associated with a

parametrized curve (as explained in Section 2). In particular, the envelope

HO of the lines l(t) is the Minkowski caustic. We collect explicit formulas in
the next lemma. These formulas hold true even if the function \j"(t), 7/;/(0]
has zeroes.

LEMMA 3.2. The envelope is

rw=iw+fê^r7"®'
the radius of curvature is

[Y(0,V'(0]2
[Y'(0,7'"«]

and cusps of T(0 correspond to critical points of the curvature function

[7"tf),V"")].
[y«),7"«)]
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Examples.

1) Let 7 be a nonparametrized smooth closed strictly convex plane curve
and O be its interior point. Take O as the origin in R2. There exists a

parameterization 7(t) such that 1 for all t. Then 7f,(t) is

colinear with 7(0, and the caustic in the corresponding Minkowski geometry
degenerates to the point O. All points of 7 are Minkowski vertices, and all

osculating indicatrices coincide with the curve itself.

2) Let a parameterization 7(t) satisfy |~yf{t),yf'(t)\ 1 for all t (an

affine parameter). The indicatrix in the corresponding Minkowski geometry is

given by the formula I(t) — 7"(t). The lines l(t), generated by the vectors

y"ii), are called affine normals of the curve. The line lit) is tangent to the

curve that consists of midpoints of the segments, bounded by the intersections
of 7 with the lines, parallel to the tangent line to 7 at point 7(0 — see

Figure 4. The envelope of the affine normals is called the affine caustic.

Figure 4

Differentiating the equality [VOO,7"(0] 1 one finds: 7'"(f)
-k{t) 7/(0, where the function k(t) is called the affine curvature. The affine
curvature is reciprocal to the curvature radius in the corresponding Minkowski
geometry. Critical points of the affine curvature are called affine vertices (or
sextactic points). A smooth closed convex curve has at least 6 affine vertices
(see [B1 2]); thus a generic affine caustic has at least 6 cusps. Affine vertices
are points of 5-th order contact of the curve with a conic; at an ordinary point
the order of contact is one less.

To conclude this section, note that the Minkowski metric gives rise to a
symplectic form uj in the space C of oriented lines in the plane. Indeed, C is
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identified with the space of trajectories of the geodesic flow £. Let À be the

contact form in the space of cooriented contact elements associated with the

Hamiltonian function H (see Theorem 1.1). Then the 2-form dX descends to
C ; this is the symplectic form in question.

The family of Minkowski normals to 7 is a curve a C C. Let cfq C C be

the curve that consists of oriented lines through a fixed point a in the plane.

LEMMA 3.3. The to-area of the region in C between the curves a and

cr0 equals zero.

Proof Denote by 70 the set of cooriented contact elements with the foot

point at x. Then 70 is a Legendrian curve. The projections of 7 and 70 along
the trajectories of £ are the curves a and cr0. The area under consideration
is the integral of the form dX over a film spanned by 7 and 70. By Stokes'

theorem, this area equals

since both curves are Legendrian.
In particular, the curves a and ao intersect at least twice. Therefore at

least two Minkowski normals to 7 pass through an arbitrary point a in the

plane. If the Minkowski metric is associated with a parametrized curve 7(t)
then the corresponding values of t are the critical points of the function

[7 it)- x,7'(?)] •

Remark. In the Euclidean case a convex closed curve has at least 2

double normals (chords, perpendicular to the curve at both ends). This is still
true in the Minkowski setting, provided the indicatrix is centrally symmetric,
but does not seem to hold in general.

This section contains proofs of the 4-vertex theorem in the Minkowski

setting (different from the one in [Tl]) and a generalization of Theorem 0.1.

The arguments used are, more or less, classical; recently the approach via
Sturm theory attracted new interest (see [A 1, A 4, A 5, G-M-O]).

Let J have the same meaning as in the previous section and let J{t) be

some parameterization of this curve, 0 < t < T. Let 7(t) be a strictly convex
closed smooth curve, parametrized so that the tangent vector 7ft) has the

4. Minkowski vertices and Chebyshev systems
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