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QUATERNARY CUBIC FORMS

AND

PROJECTIVE ALGEBRAIC THREEFOLDS

by Alexander SCHMITT

Introduction

As algebraic geometers, we are interested in a special kind of complex
manifolds, namely in complex submanifolds of projective spaces. A submanifold

A of P„ is given as the common zero locus of a set of homogeneous
polynomials such that the Jacobi matrix of these polynomials has rank n — dim A
at every point of A. We call such a manifold a projective algebraic manifold.
The main goal is the classification of projective algebraic manifolds up to bi-

holomorphic equivalence. Now, a projective algebraic manifold is in particular
an oriented and closed topological manifold. Moreover, biholomorphic maps
are orientation preserving homeomorphisms.

Thus, we obtain a natural approach to the classification of projective
algebraic manifolds which can be stated for complex dimension 3 as follows :

Given a six-dimensional, closed, and oriented topological manifold A,
describe all projective algebraic threefolds (up to biholomorphic equivalence)
whose underlying topological manifold is orientation preservingly homeomor-

phic to A.
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Of course, one does not have a general classification of the respective
topological manifolds. However, if we restrict our attention to simply connected,

six-dimensional, closed, and oriented topological manifolds with torsion free

homology, there is a classification result in the sense of algebraic topology,
due to C.T.C. Wall [Wa] and P.E. Jupp [Ju]. This means the classification of
simply connected, six-dimensional, closed, and oriented topological manifolds
with torsion free homology up to orientation preserving homeomorphy can
be reduced to the classification of certain algebraic data, so called admissible

systems of invariants.

The explicit classification of these algebraic data can be carried out in the

case the second Betti number b2 is 1 [OV]. But already for b2 2, the

picture is rather complicated and not yet complete [Sch3]. So, it seems to be

a rather hopeless task to classify systems of invariants for b2 > 2. Thus, we
restrict ourselves to the consideration of the most important part of the system
of invariants of the simply connected, six-dimensional, closed, and oriented

topological manifold X, the cup form

<Pxi S3H2(X,Z)—» z
[a G> b G> c] I—» (a U b U c)[X\.

Here, [X] is the fundamental class of X. We remark that the assumptions

we make on the manifold X imply that the whole cohomology ring of X is

determined by ipx and the third Betti number b2(X).

We can also replace Z by R or C to obtain a weaker invariant. By our
hypothesis, H2(X,Z) is a free Z-module, and H2(X.R) H2(X.Z) R,
R R, C. If we fix a basis for H2(X. R), we can identify ipx with a

homogeneous cubic polynomial. On the module of all homogeneous cubic

polynomials in b variables, there is an action of GL/,(7?) by substitution of
variables. Hence, we obtain a coarse picture of the classification of simply
connected, six-dimensional, closed, and oriented topological manifolds with
b2 b if we determine the normal forms for cubic polynomials over Z in

b variables w. r. t. the action of GL^(Z) and if we describe the set of forms

tpx, X being a topological manifold.

For the latter part, we remark that there is a simple criterion to check

whether a given cubic polynomial over Z is of the form (px or not (see

[Sch2], Cor. 1). For example, this criterion is fulfilled if all coefficients are

divisible by 6. The determination of normal forms is again very difficult.

However, if we work over the field of complex numbers instead, results are

known for up to b 4 variables. The results for b < 3 variables are easily
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accessible. On the other hand, the results for b 4 are scattered in the

literature of over 100 years. Hence, we have written an extensive summary

of the theory of complex quaternary cubic forms. Being interested in (Cubic

forms over Z)/GLb(Z), it is more reasonable to consider the action of
SLb(C) := {m G GLj,(C) | det(m) ±1}. To simplify things we will consider

the action of SL^(C) instead. This is the content of Part I.

In the second part, we treat the following weakened form of our original

problem :

Which quaternary cubic forms can occur as cup forms of simply connected

projective threefolds

For the case b < 3, we refer the reader to [OV]. In this part, we have

collected a number of examples. We also show that there is a simply connected

projective threefold with £>2 3 whose cup form defines a plane cubic with
a node, a problem which remained unsolved in [OV]. We conclude our notes

by a brief summary of the author's results concerning the non-realizability of
certain real cubic polynomials as cup forms of projective threefolds.
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I. Quaternary Cubic Forms

In this section, we will be concerned with the space S3(C4V) of quaternary
cubic forms on which SL4(C) acts by substitution of variables. In particular,
we will treat the following problems :

1) Find "good" representatives for the orbits in S3(C4V) ;

2) Describe the categorical quotient S3(C4V)// SL4(C).
(The categorical quotient is an affine algebraic variety whose set of points

is in natural bijection with the closed orbits in S3(C4V). A good introduction
to this kind of constructions can be found in [Ne].)
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