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2.2. EXAMPLES.

1) In [H-W] it is shown, by a simple argument, that g(Z") > 0 for
all n > 1. We return to that case later on. Here we just recall that
g(Z) = g(Z*) = q(Z*) = 0, as is easily seen by taking an appropriate M with
x(M) = 0. However for Z> one only gets 0 < g < 2, the deficiency being O.

2) For the surface group %,, g > 2, i.e. the fundamental group of the
closed orientable surface of genus g, one has def(X;) =2¢g—1 and 0§, = 2g.
Thus

2—-4g <qZy) <4-—4g.

3) For any knot group G (the fundamental group of the complement of a
classical knot in S?) the deficiency is 1 and ; = 1 whence ¢(G) = 0.

4) Let G be a 2-knot-group, i.e. the fundamental group of the complement
of two-dimensional knot S? in S*. As for classical knots 5;(G) = 1. Surgery
along the imbedded sphere S? produces a 4-manifold M with fundamental
group G, and with 3,(M) = 0, whence xM = 0. Thus again ¢(G) = 0.

2.3. There is a topological ingredient available in 4-manifolds which has
not been used, namely the signature. This has suggested a more refined group
invariant associated with 4-manifolds, see the next section.

3. THE (x + 0)-INVARIANT

3.1. We recall that the cohomology group H?*(M;R) is a real quadratic
space, the quadratic form being given by the cup-product evaluated on the
fundamental cycle of M. It is non-degenerate, and the space splits into a
positive-definite and a negative-definite subspace of dimensions 62‘* and (3
respectively. The difference 3, — 3, = o(M) is the signature of M. Its sign
clearly depends on the orientation of M and we assume the orientation chosen
in such a way that o(M) <0, i.e., ,6; < B, . Since (B = 6; + 3, the sum
xX(M)+o(M) is equal to 2 — 2B1(G)+2/32+(M), where as always G = m;(M).
Since that sum is bounded below by 2—23,(G) depending on G only one can
define an invariant p(G) to be the minimum of x (M) + o(M) for all M with
fundamental group G and oriented in such a way that o(M) < 0. Obviously
p(G) < g(G). An equivalent way to define p(G) is to take, independently of
orientations, the minimum of x(M) — |oc(M)].

Putting together all above inequalities we get

2=201(6) < p(G) < q(G) <2 —2def(G).
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3.2. It seems difficult in general to compute the value of p(G) and ¢(G),
and their group-theoretic meaning is not known. We first show how one
can proceed in special cases where information on H?*(G), i.e. H? of the
Eilenberg-MacLane space K(G,1) is available. We then show (Section 3.3)
that it is quite interesting for applications to know that the two invariants are
non-negative. (This is clearly the case if (;(G) < 1, in particular if G is
finite).

Any 4-manifold M with 7 (M) = G can be imbedded in a K(G,1) by
adding cells of dimension 2,3,... in order to kill the homotopy groups in
dimensions > 2. This yields an injective map H*(G;R)—H*(M;R). If in
H?*(G;R) the cup-product happens to be trivial then H*(M;R) contains an
isotropic subspace of dimension (,(G). In that case ﬁ;" (M) must be > 5,(G)
so that

p(G) > 2 —26,(G) + 2,(G).

This applies to examples in 2.2:

For the group G = Z* the 3-dimensional torus is a K(G, 1) and the cup-
product in H? is trivial. Since 3,(G) = 5(G) =3 we get p(Z?) > 2 whence
p(Z°) = ¢(Z°) = 2.

For G = X;, g > 2, the surface of genus g is a K(G,1), and
Bi(G) = 2g, (2(G) = 1. Thus p(G) > 4—4g whence p(X,) = ¢(Z,) = 4—4g.
So here the invariants are negative. Another such case is the free group F),
on m > 2 generators where one easily finds p(F,,) = q(F,,) =2 — 2m.

3.3. There are several instances where the sign of the invariants yields
significant information on the 4-manifolds or the groups involved. We mention
three of them.

I) Deficiency. From the inequality in 2.1 one immediately notes that if
¢(G) > 0 then def(G) < 1. We will return to this fact later on.

I) Complex surfaces. }?Ve assume that our 4-manifold M is a complex
surface (complex dimension 2). Then it is known that x + o of M can be
expressed in different ways: We write ¢, for the second Chern class c¢,(M)
evaluated on M, ¢} for the cup-square of the first Chern class evaluated on
M. Then x(M) = ¢, and o(M) = 1/3(0% — 2¢;) [since the signature is 1/3
of the first Pontrjagin number, which in the complex case can be expressed
by the Chern classes as above]. Thus

Y(M) + o(M) = c; + 1/3(c? — 2¢3) = 1/3(c? + ¢3).

This is 4 times the holomorphic Euler characteristic 1 —g; + ¢, of M by the
Riemann-Roch theorem.
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PROPOSITION 1. Let M be a complex surface, and assume that its funda-
mental group G fulfills p(G) > 0. Then the holomorphic Euler characteristic
of M is > 0.

By the Kodaira-Enriques classification it follows that M cannot be ruled
over a curve of genus > 2.

REMARK. The formulae above leading to the holomorphic Euler charac-
teristic refer to the orientation of the complex surface dictated by the complex
structure. Thus the argument is valid only if in that orientation oM) <0.If
however o(M) > 0 then p(G) > 0 implies that 2—251(G)—|—252+Wf0ng(M) >0
where 6;“ — refers to the “wrong” orientation and is = (3, (M). Now

6; (M) > 3, (M) by assumption. Thus the result remains true; the holomor-
phic characteristic is > 0.

1) Donaldson Theory. Finitely presented groups G with p(G) > 0 and
B1(G) > 4 do not qualify for the Theorems A,B, and C of Donaldson
[D] relating to non-simply connected topological manifolds. Indeed in these
theorems the signature is assumed to be negative with BQL =0, 1 or 2.
However p(G) > 0 means 2—2/81(G)+2ﬁ2+(M) >0, 1.e. 6;(M) > 0(G)—1.

4. DEUS EX MACHINA : [, -COHOMOLOGY

4.1. We recall in a few words the (cellular) definition of [, -cohomology
and [,-Betti numbers, in the case of a 4-manifold M but things apply to any
finite cell-complex.

Some definitions: For any countable group G let /G be the Hilbert
space of square-integrable real functions on G, with G operating on the left,
and NG the algebra of bounded G-equivariant linear operators on LG. A
Hilbert-G-module H is a Hilbert space with isometric left G-action which
admits an isometric G-equivariant imbedding into some [,G™ (direct sum of
m copies of [,G). The projection operator ¢ of ,G™ with image H is given
by a matrix (¢u), ¢ € NG. The “trace” > (pu(1),1) is the von Neumann
dimension dimg H; it is a real number > 0, and = 0 if and only if H = 0.

Let M be the universal cover of M with the cell-decomposition corre-
sponding to that chosen in M. The square-integrable real i-cochains of M
constitute a Hilbert space Céz)(M ) with isometric G-action. It decomposes into
the direct sum of «; copies of LG, i =0,...,4. As before «; denotes the
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