3. The (+) -invariant Objekttyp: Chapter Zeitschrift: L'Enseignement Mathématique Band (Jahr): 43 (1997) Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am: **04.06.2024** #### Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. ### Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch ## 2.2. EXAMPLES. - 1) In [H-W] it is shown, by a simple argument, that $q(\mathbf{Z}^n) \geq 0$ for all $n \geq 1$. We return to that case later on. Here we just recall that $q(\mathbf{Z}) = q(\mathbf{Z}^2) = q(\mathbf{Z}^4) = 0$, as is easily seen by taking an appropriate M with $\chi(M) = 0$. However for \mathbf{Z}^3 one only gets $0 \leq q \leq 2$, the deficiency being 0. - 2) For the surface group Σ_g , $g \geq 2$, i.e. the fundamental group of the closed orientable surface of genus g, one has $\operatorname{def}(\Sigma_g) = 2g 1$ and $\beta_1 = 2g$. Thus $$2-4g\leq q(\Sigma_g)\leq 4-4g.$$ - 3) For any knot group G (the fundamental group of the complement of a classical knot in S^3) the deficiency is 1 and $\beta_1 = 1$ whence q(G) = 0. - 4) Let G be a 2-knot-group, i.e. the fundamental group of the complement of two-dimensional knot S^2 in S^4 . As for classical knots $\beta_1(G) = 1$. Surgery along the imbedded sphere S^2 produces a 4-manifold M with fundamental group G, and with $\beta_2(M) = 0$, whence $\chi M = 0$. Thus again q(G) = 0. - 2.3. There is a topological ingredient available in 4-manifolds which has not been used, namely the signature. This has suggested a more refined group invariant associated with 4-manifolds, see the next section. # 3. The $(\chi + \sigma)$ -invariant 3.1. We recall that the cohomology group $H^2(M; \mathbf{R})$ is a real quadratic space, the quadratic form being given by the cup-product evaluated on the fundamental cycle of M. It is non-degenerate, and the space splits into a positive-definite and a negative-definite subspace of dimensions β_2^+ and β_2^- respectively. The difference $\beta_2^+ - \beta_2^- = \sigma(M)$ is the signature of M. Its sign clearly depends on the orientation of M and we assume the orientation chosen in such a way that $\sigma(M) \leq 0$, i.e., $\beta_2^+ \leq \beta_2^-$. Since $\beta_2 = \beta_2^+ + \beta_2^-$ the sum $\chi(M) + \sigma(M)$ is equal to $2 - 2\beta_1(G) + 2\beta_2^+(M)$, where as always $G = \pi_1(M)$. Since that sum is bounded below by $2 - 2\beta_1(G)$ depending on G only one can define an invariant $\rho(G)$ to be the minimum of $\chi(M) + \sigma(M)$ for all M with fundamental group G and oriented in such a way that $\sigma(M) \leq 0$. Obviously $\rho(G) \leq q(G)$. An equivalent way to define $\rho(G)$ is to take, independently of orientations, the minimum of $\chi(M) - |\sigma(M)|$. Putting together all above inequalities we get $$2 - 2\beta_1(G) \le p(G) \le q(G) \le 2 - 2 \operatorname{def}(G)$$. 3.2. It seems difficult in general to compute the value of p(G) and q(G), and their group-theoretic meaning is not known. We first show how one can proceed in special cases where information on $H^2(G)$, i.e. H^2 of the Eilenberg-MacLane space K(G,1) is available. We then show (Section 3.3) that it is quite interesting for applications to know that the two invariants are non-negative. (This is clearly the case if $\beta_1(G) \leq 1$, in particular if G is finite). Any 4-manifold M with $\pi_1(M) = G$ can be imbedded in a K(G,1) by adding cells of dimension $2,3,\ldots$ in order to kill the homotopy groups in dimensions ≥ 2 . This yields an injective map $H^2(G;\mathbf{R}) \longrightarrow H^2(M;\mathbf{R})$. If in $H^2(G;\mathbf{R})$ the cup-product happens to be trivial then $H^2(M;\mathbf{R})$ contains an isotropic subspace of dimension $\beta_2(G)$. In that case $\beta_2^+(M)$ must be $\geq \beta_2(G)$ so that $$p(G) \ge 2 - 2\beta_1(G) + 2\beta_2(G)$$. This applies to examples in 2.2: For the group $G = \mathbb{Z}^3$ the 3-dimensional torus is a K(G, 1) and the cupproduct in H^2 is trivial. Since $\beta_1(G) = \beta_2(G) = 3$ we get $p(\mathbb{Z}^3) \geq 2$ whence $p(\mathbb{Z}^3) = q(\mathbb{Z}^3) = 2$. For $G = \Sigma_g$, $g \ge 2$, the surface of genus g is a K(G,1), and $\beta_1(G) = 2g$, $\beta_2(G) = 1$. Thus $p(G) \ge 4-4g$ whence $p(\Sigma_g) = q(\Sigma_g) = 4-4g$. So here the invariants are negative. Another such case is the free group F_m on $m \ge 2$ generators where one easily finds $p(F_m) = q(F_m) = 2 - 2m$. - 3.3. There are several instances where the sign of the invariants yields significant information on the 4-manifolds or the groups involved. We mention three of them. - I) Deficiency. From the inequality in 2.1 one immediately notes that if $q(G) \ge 0$ then $def(G) \le 1$. We will return to this fact later on. - II) Complex surfaces. We assume that our 4-manifold M is a complex surface (complex dimension 2). Then it is known that $\chi + \sigma$ of M can be expressed in different ways: We write c_2 for the second Chern class $c_2(M)$ evaluated on M, c_1^2 for the cup-square of the first Chern class evaluated on M. Then $\chi(M) = c_2$ and $\sigma(M) = 1/3(c_1^2 2c_2)$ [since the signature is 1/3 of the first Pontrjagin number, which in the complex case can be expressed by the Chern classes as above]. Thus $$\chi(M) + \sigma(M) = c_2 + 1/3(c_1^2 - 2c_2) = 1/3(c_1^2 + c_2).$$ This is 4 times the holomorphic Euler characteristic $1 - g_1 + g_2$ of M by the Riemann-Roch theorem. PROPOSITION 1. Let M be a complex surface, and assume that its fundamental group G fulfills $p(G) \ge 0$. Then the holomorphic Euler characteristic of M is ≥ 0 . By the Kodaira-Enriques classification it follows that M cannot be ruled over a curve of genus ≥ 2 . REMARK. The formulae above leading to the holomorphic Euler characteristic refer to the orientation of the complex surface dictated by the complex structure. Thus the argument is valid only if in *that* orientation $\sigma(M) \leq 0$. If however $\sigma(M) > 0$ then $p(G) \geq 0$ implies that $2 - 2\beta_1(G) + 2\beta_2^+_{\text{wrong}}(M) \geq 0$ where $\beta_2^+_{\text{wrong}}$ refers to the "wrong" orientation and is $= \beta_2^-(M)$. Now $\beta_2^+(M) > \beta_2^-(M)$ by assumption. Thus the result remains true; the holomorphic characteristic is > 0. III) Donaldson Theory. Finitely presented groups G with $p(G) \ge 0$ and $\beta_1(G) \ge 4$ do not qualify for the Theorems A,B, and C of Donaldson [D] relating to non-simply connected topological manifolds. Indeed in these theorems the signature is assumed to be negative with $\beta_2^+ = 0$, 1 or 2. However $p(G) \ge 0$ means $2 - 2\beta_1(G) + 2\beta_2^+(M) \ge 0$, i.e. $\beta_2^+(M) \ge \beta_1(G) - 1$. # 4. Deus ex machina: l_2 -cohomology 4.1. We recall in a few words the (cellular) definition of l_2 -cohomology and l_2 -Betti numbers, in the case of a 4-manifold M but things apply to any finite cell-complex. Some definitions: For any countable group G let l_2G be the Hilbert space of square-integrable real functions on G, with G operating on the left, and NG the algebra of bounded G-equivariant linear operators on l_2G . A Hilbert-G-module H is a Hilbert space with isometric left G-action which admits an isometric G-equivariant imbedding into some l_2G^m (direct sum of m copies of l_2G). The projection operator ϕ of l_2G^m with image H is given by a matrix (ϕ_{kl}) , $\phi_{kl} \in NG$. The "trace" $\sum \langle \phi_{kk}(1), 1 \rangle$ is the von Neumann dimension $\dim_G H$; it is a real number ≥ 0 , and = 0 if and only if H = 0. Let \widetilde{M} be the universal cover of M with the cell-decomposition corresponding to that chosen in M. The square-integrable real i-cochains of \widetilde{M} constitute a Hilbert space $C^i_{(2)}(\widetilde{M})$ with isometric G-action. It decomposes into the direct sum of α_i copies of l_2G , $i=0,\ldots,4$. As before α_i denotes the