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q: T -> Ug. We know from Lemma 3.1 that T is algebraic. Hence, for any

K G CK, the push-forward q*p~l(K) describes an algebraic system of rational

curves on K, which cannot be of dimension > 1, by Lemma 1.1, since

K e CK is a K3 surface. Hence this algebraic system is finite. Moreover, T
parametrizes only reduced curves of degree 8, which therefore do not belong

to more than one quadric. Hence each Chow point 7 corresponds to a unique

pair (7,0. Thus the fibre p~\K) contains only finitely many points.

Let E C T be an irreducible component of top dimension 34. By the

theorem on the dimension of the fibres (see [Sh], Chap. 1, §6, Thm. 7), we

see that dimp(E) dim£ 34.

On applying Chevalley's theorem to the quasi-projective varieties T and

CK and to the finite-type morphism p, we also see that p(T) is constructible,

i.e., a finite disjoint union of locally closed subsets Vj. Since Ck is quasi-

projective, so are the V).

The same argument works for curves of degree 12, with the map

p: J —> Ck- Note that one gets, for a component E c J of maximal

dimension,
34 > dimp(£) dim is > 34.

Hence we obtain the same equality as before.

Remarks. 1) As expected, singular points other than nodes do not affect

the dimensions of the relevant schemes. This is because, roughly speaking,
nodes impose the lowest number of conditions for decreasing the geometric

genus. However, as is shown by Lemma 2.1, not all curves in Theorem 3.4

have only nodes for singularities.

2) In the proof of Theorem 3.4, we could replace E by its closure E in
x Tq x Ck where Tq denotes the space of all quadrics in P3. Now,

72b x Tq is a projective variety. Hence p(E) is closed (cf. [Sh], Chap. 1, §5,
Thm. 3) and p(E) CK. This would account in particular for the rational
octics that lie on a quadratic cone, instead of a smooth quadric surface.

4. Rational curves on K3 surfaces in P4

Let ^2,3 be a K3 surface spanning P4 (i.e., not contained in any
hyperplane). The notation refers to the fact that such a surface is a smooth
complete intersection of a quadric and a cubic threefold. We also write <S2,3 for
the 43-dimensional quasi-projective variety of all S2;3 's in P4 (see Lemma 4.2).
In the present section we prove:
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THEOREM 4.1. The surfaces in £2,3 carrying rational integral curves of
degree 12, obtained as intersections with smooth quadrics, form a constructible
set of dimension 43 in £2,3.

The idea is to consider the curves at issue as belonging to the intersection
of two quadrics in P4. This is a Del Pezzo surface (i.e., its anticanonical sheaf

is ample). Hence it is not very different from a cubic surface. In particular, it
is rational and we can apply again the results of Tannenbaum.

We write V4 for the quasi-projective variety of all smooth intersections of
two quadrics in P4. Thus, V4 is an open subset of the Grassmann variety of
pencils of quadrics in P4.

LEMMA 4.2. V4 has dimension 26; and £2,3 has dimension 43.

Proof The dimension of V4 is the dimension of the Grassmann variety
of rank 2 subspaces of the space of quadratic forms in 5 variables, to wit,
2(15 — 2) 26.

Similarly, £2,3 is an open subset of the projective bundle over the

space P14 of quadrics with fibre the projectivization of the space of cubic

forms modulo (linear) multiples of a quadric. Thus the fibre has dimension

(3+4)-5-1 =29.

Lemma 4.3. Anysmooth intersection of two quadrics C P4 carries

(for any positive integer X) a rational, reduced and irreducible curve T\
of degree m 4À having only nodes for singularities, which belongs to the

linear system \X\\ cut out by all hypersurfaces of degree A.

Such curves are parametrized by an irreducible quasi-projective scheme of
dimension m — 1.

Proof We simply note that P eV4 is embedded in P4 by its anticanonical
sheaf. Hence we can apply [Col], Lemma 1, and the proofs of Lemma 2.5

and Lemma 2.6 carry over with minimal changes.

In the present paper we are especially interested in the case where À 3.

The lemma shows that there exist rational, integral curves of degree m 12

on some surfaces S G £2,3. They are obtained as intersections with smooth

quadrics and have only nodes for singularities.

Proof of Theorem 4.1. Let Gn be the Chow variety of rational curves of
degree 12 in P4. As explained at the beginning of §3, we can work over an
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open set of reduced and irreducible curves. This will be implied whenever we

write a new correspondence. (For simplicity we shall use the same notation,

r, for a curve and for its Chow point.)
We denote by CQ (resp., Cc) the quasi-projective varieties of smooth

quadric (resp., cubic) threefolds in P4. As in Lemma 3.1, the incidence

correspondences we are working with can be "pulled up" to define the

following algebraic correspondences :

U {(r. P) £ G12 X Va I r P n C for some C £ Lc }

and

J {(r. S) £ Gn X Si.3 I r S n j2 for some Q £ CQ }

In view of Lemmas 4.2 and 4.3, the dimension of 77 is equal to 26 + (m — 1)

37. This is also the dimension of its image in Gn- Indeed, the fibres of the

second projection are finite, since a curve T £ Gn cannot belong to more

than one intersection of two quadrics. (In fact, there is even a map that goes

directly from J to 77, but we can do without it.)
To compute the dimension of J, we notice that 77 and J have the same

image in Gn Now, a general element in the image of 77 corresponds to

a curve T of degree 12 with 13 distinct nodes and belongs to a pencil of
quadrics. But a surface S £ 63.3 is contained in a unique quadric. Hence

an element in the fibre of J above T determines a quadric, say Q, in the

ocl -system of quadrics through T and is then determined by the family of all
cubic threefolds containing T, provided we discount the reducible elements

that contain Q.
On the other hand, no more than 24 conditions are required for a cubic

hypersurface to contain F. In fact it is enough to impose 11 simple points and

the 13 double points, since this represents 2-13 + 11 3-12+1 intersections.
Therefore, as a vector space, the family of cubics containing T has dimension

(>) 35 - 24 11.

After discounting, as in Lemma 4.2, the 5-dimensional vector space of
reducible cubics containing Q as a component, we are left with an oo5 -system
of surfaces6) S £ 62.3 containing T and contained in Q. As Q varies in a

pencil, the fibre of J above T has dimension (>) 5 + 1=6.
It follows that J is of dimension (>) 37 + 6 43. Now, let p be the

projection map from J to 62.3- By Lemma 1.1 all the fibres of this map
are finite. Since the dimensions are right, as is shown by Lemma 4.2, we
conclude exactly as in the proof of Theorem 3.4.

6) The smoothness can be proved by an extension of Lemma 2.2, in which we replace the
divisors in P3 by divisors in Q.
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Remark. Theorems 3.4 and 4.1, together with [C-S], Example 1.3, clearly
imply the following statements :

THEOREM 3.4' The smooth quartics in P3 carrying reduced and
irreducible curves of degree 8, respectively 12, and geometric genus 9 — 8

(0 < 8 < 9), respectively 19 — 8 (Q < 8 < \9), obtained as intersections with
smooth quadrics, respectively cubics, and having 8 nodes, form a constructible
set of dimension 34 in CK.

THEOREM 4.1' The surfaces in <5*2,3 carrying integral curves of degree 12

and geometric genus 13 — 8 (0 < 8 < 13), obtained as intersections with
smooth quadrics, form a constructible set of dimension 43 in S23 •

REFERENCES

[Ca] Cayley, A. On a new analytical representation of curves in space. Quart. J.

of Pure and App. Math. 3 (1860), 225-236 (Collected Papers, vol. 4,
446-455).

[C-S] Chiantini, L. and E. Sernesi. Nodal curves on surfaces of general type.
Preprint, 15 p.

[Col] CORAY, D. Points algébriques sur les surfaces de Del Pezzo. C. R. Acad.
Sc. Paris 284 A (1977), 1531-1534.

[Co2] Enumerative geometry of rational space curves. Proc. London Math.
Soc. 46 (1983), 263-287.

[De] Deligne, P. Le théorème de Noether. In: SGA 7 II, Lecture Notes in
Mathematics no. 340, exposé 19, pp. 328-340. Springer (Berlin-
Heidelberg-New York), 1973.

[G-G] Green, M. and Ph. Griffiths. Two applications of algebraic geometry
to entire holomorphic mappings. In: The Chern Symposium 1979.

Springer (New York), 1980, 41-74.

[Ha] Harris, J. On the Severi Problem. Invent. Math. 84 (1986), 445-461.

[Hart] HARTSHORNE, R. Algebraic Geometry. Springer (New York), 1977.

[H-P] HODGE, W.V.D. and D. Pedoe. Methods of Algebraic Geometry, vol. 2.

Cambridge Univ. Press (Cambridge), 1952.

[La] LANG, S. On quasi algebraic closure. Annals of Math. 55 (1952), 373-390.

[Me] MEYER, W. Fr. Flächen vierter und höherer Ordnung. In: Enzykl. Math.
Wiss. III.2.2 B, 1533-1779.

[M-M] MORI, S. and S. Mukai. The uniruledness of the moduli space of curves
of genus 11. In: Lecture Notes in Maths 1016 (1983), 334-353.

[No] NOETHER, M. Zur Grundlegung der Theorie der algebraischen Raumcurven.
Abh. Akad. Wissenschaften zu Berlin (1882), 120 p.

[Se] SEGRE, B. A remark on unicursal curves lying on the general quartic surface.

Oxford Quarterly J. of Maths 15 (1944), 24-25.


	4. Rational curves on K3 surfaces in $P^4$

