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4. SL(n.R)-ACTIONS ON R" FOR n >3

Let n > 3. We first give examples of Cl-actions of SL(n.R) on R".
Consider the canonical projective action of SL(n.R) on Sl Let A™ be
the radial half-line through the first basis element e; and let H denote the
subgroup of SL(n.R) that fixes A™. So SL(n.R)/H = §"~'. Consider the
homomorphism

U (A;j) € H— InAyp € R

Notice that one obtains a linear action of H on RJ = (0.x) by setting
h(x) = e¥"Mx, for all h € H, x € R} . Obviously this is conjugate to the
H-action on A™T. It follows from Lemma 3.7 that the action of SL(n.R)
obtained by suspension of this action of H on R is the canonical linear
action of SL(n.R) on R"\{0}. In fact, the map

v [g.x] € (SL(?Z,R) X R:)/H — g(xe;) € R"™\{0}

is an isomorphism. We now deform the action of H. Choose a topological
flow (0');er on RT = [0.x), fixing 0. This defines an action of H on
R by setting h(x) = o¥™(x), for all h € H. x € RZ. Now suspend this
action of H and let @ denote the resulting action of SL(n.R) on the space
M = (SL(n,. R) xR} )/H. The space M fibres over $"~', with fibre R . and
the structure group is orientation preserving. So topologically, M is R x S"~ 1.
Thus, identifying $"~! x {0} to a point, we obtain an SL(n.R)-action on R".
The fixed points of the flow ¢ correspond to orbits in R” which are spheres
of dimension n—1. In general, an n-dimensional orbit is either all of R"\{0},
as in the linear case, or it is a spherical shell, bounded by S"=1 orbits, or a
punctured ball bounded by an $"~! orbit, or the exterior of an $"~! orbit. In

all cases, the n-dimensional orbits are conjugate to the canonical linear one
on R"\{0}, by Theorem 3.5(c).

THEOREM 4.1. For all n > 3, every non-trivial C°-action of SL(n.R) on
(R".0) is conjugate to one of the above actions @.

Proof. Suppose that we have a non-trivial C%action of SL(n.R) on
(R".0). First use Proposition 3.8 to linearize the SO(n)-action. Then by
Lemma 3.9, the SL(n.R)-action preserves the radial lines. Hence the radial
projection R"™\{0} — §"~' is equivariant, where the action of SL(n.R) on
§"~! is the canonical projective one. Let H be the stabilizer of the radial half-
line A™ through e;, as above. So the action of SL(n. R) on R"\{0} is induced
by some action of H on R. Notice that this action is trivial when restricted to

k-
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SO(n — 1). It remains to consider all actions of H on R which are trivial on
SO(n—1). Again, by Lie [23, ibid.], these are given by homomorphisms from
H to R, Aff, or (some cover of) PSL(2,R). We have the homomorphism
Y: (Aij) € H— InAy; € R. Note that keryp = SL(n — 1,R) x R*™!. But it
is easy to see that there are no non-trivial homomorphisms of kervy to R or
Aff. There are no non-trivial homomorphisms of kery to SL(2,R), except
in the case n = 3, and in this case there are no such homomorphisms which
are trivial on SO(n — 1). So the only possibility left is that H acts on R by
some flow. Finally, we put back the origin, as in the proof of Proposition 3.8.
This completes the proof of the theorem. [

We now prove Theorem 1.1 for n > 3.

THEOREM 4.2. For all n > 3 and k = 1,...,00, every C*-action of
SL(n,R) on (R",0) is C*-linearizable.

Proof. Let n >3 and k= 1,...,00 and suppose that we have a non-
trivial C*-action of SL(n,R) on (R”,0). By Remark 3.4, we may assume that
the differential of the action at the origin is either the identity or the map
g — (g1H". We will assume that it is the identity; the other possibility can
be handled using the same argument.

Linearizing the SO(n)-action, using the Bochner-Cartan theorem, one may
assume that the SO(n)-action is the canonical one. Then by Lemma 3.9, the
SL(n, R)-action preserves the radial lines. Let A denote the radial line through
the first of the canonical basis elements, e;. Consider H = Stabg;(, ry(A), as
before. So, as we saw in the proof of Theorem 4.1, H defines a C*-flow
on A. This flow is hyperbolic, by the first paragraph. Hence by Theorem 2.5,
this flow is linearizable by some local C*-diffeomorphism f of A(= R). So,
after conjugacy, we may assume that H acts linearly on A. Now define the
local C*-diffeomorphism F of R” by the formula:

e
) F(x):{ b X7

: x=0.

To see that F is of class C*, the key point is to verify that f is a C* odd
function on R. This follows easily from the fact that the flow on A commutes
with Stabgo(, r)(A), and the SO(n)-action is linear.

Now notice that F agrees with f on AT = {re; € A : t > 0}, and
as F commutes with the SO(n)-action, the SO(n)-action is unchanged by
conjugation by F. In particular, the SO(n)-action still commutes with dilations.
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It follows that after conjugation by F, the SL(n,R)-action commutes with
dilations. Indeed, consider the conjugated SL(n,R)-action. If f € SL(n,R),
x € R* and A > 0, then choose a,b € SO(n) such that ax € At and
bf(\x) € AT . Provided x is sufficiently close to 0, ax and bf(Ax) will lie in
the domain of f. Then bfa~! € H and so

FOx) = b bfa" a(x) = b (bfg ™) Aax)
= b_lx\(bfa—l)a(x) = /\b—l(bfa_l)a(x)
= M(x).

The proof of the theorem is then completed by the following well known
result (cf. [17, Lemma 2.1.4]). [

LEMMA 4.3. Every C' map commuting with dilations is linear.

Proof. Suppose that f is a C'-diffeomorphism of R" which commutes
with dilations. By comparing the differential of A.f and fo A at x we have
Adf|; = Adf|x, for each A > 0 and every x € R". Hence df |x = df|x and
so df is constant on the radial lines. Thus df|, = df|o for all x and so f is
linear. [

5. THE ADJOINT REPRESENTATION OF SL(2,R)

Let us recall some facts concerning the linear representations of SL(2, R).
Let P;(R?) denote the space of real valued homogeneous polynomials, of two
variables, of degree [. As a vector space, P;(R?) = R and the action
of SL(2,R) on R? defines a linear action on P;(R?): up to isomorphism,
this is the (unique) irreducible representation of SL(2,R) in dimension
[+ 1. In dimension 3, there is another useful realization of the polynomial
representation, called the adjoint representation. Notice that the group SL(2, R)
acts by the adjoint representation on its Lie algebra s[(2,R). Of course,
s[(2,R) 1s the space of 2 x 2 real traceless matrices; so as a vector space,
s[(2,R) = R®. The adjoint representation Ad: SL(2,R) — GL(3,R), defined
by

Ad(g): h+ ghg™', Vg€ SL2,R), hesl(2,R),

is an irreducible linear representation. In fact, an explicit equivariant isomor-
phism 1: s5[(2,R) — P>(R?) is obtained by taking (h), as a function of
variables x and y, to be the area of the parallelogram spanned by (x,y) and
h(x,y). That is,
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