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section collapsed. The trace function on M,+>(C) descends to G»(C™) and
to the Casimir function “perimeter” on "PP7 .

4 POLYGONS WITH GIVEN SIDES — KAHLER STRUCTURES

We now use the map £ : ’"ﬁk.’”Pi,’”Pk — R™ defined in (2.4). Recall
that ¢(p), for p € mPk is the length of the successive sides of a representative
of r with total perimeter 2.

For o = (¢, . ... o) € R, with >0 oy = 2, we define

nzr]Sk(CE) - ﬁk(a) — {,0 c mﬁk I e(p) _ CY} - mﬁk ’

The space ﬁk(a) is invariant under the action of O;. We define the moduli
spaces

P (@) 1= SO\PH@) = £~ (@) C "P}

and

Pra) == 0\ PX(@) = £ (o) € "PF.

The space ﬁl(a) consists of a finite number of points and is generically
empty. We call o generic if P(a) =@.

THEOREM 4.1. The map p = (o : G,(C") — R is a moment map
for the action of U on G,(C™).

Proof. As seen in (3.13), the moment map ¥ : Go(C") — H(m) for
the y,,,—action on G-,(C™) 1is induced from ¥ Mx2(C) — H(m) given
by W(a.b) := (a.b) - (a.b)*. A moment map p for the action of U} is
obtained by composing ¥ with the projection H(m) — R™ associating to a
matrix its diagonal entries. So, if IT € G,(C™) is generated by a and b with
(a.b) € V,(C™), one has

u(D) = (ar | + b1 am] + b)) = £o®(a, b) . n

A now classic theorem of Atiyah and Guillemin-Sternberg [Au, §111.4.2]
asserts that the image of a moment map for a torus action is a convex polytope
(the moment polytope). The restriction of the moment map to the fixed point
set of an anti-symplectic involution has the same image [Du]. In our case,
one gets these facts directly:

P
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COROLLARY 4.2. The moment map . Go(C") — R™ satisfies
,u(Gz(C’")) = u(Gz(Rm)) = E,,, where Z,, is the hypersimplex

m

En={(x1,... %) ER"|0< x5, <1 and > x=2}.
i=1

Proof. One has Image(y) = Image(f). Further it is manifest that
Image(¥) C Z,,. A proof that Image(¥) = Z,, is actually provided in [KM1],
Lemma 1, or [Ha]. We give here however another argument, for the pleasure
of constructing a continuous section o : Z,, — "P? of £. If m = 3, we have
already mentioned in (2.7) that 3P? is homeomorphic to Z3 via the map /.
Let o € E,,. Define §G; := Z;Zl «; and

r(e):=min{i | ;<1 and Gy > 1}.

The numbers f,,a,,2 — [B,+; form a triple of Z3 and are then the lengths of
a unique triangle 7(a) € *P?, which can be subdivided in the obvious way
to define the element (o) € "P?*(a) (see Figure 1).

%
Oy

. .

FIGURE 1: 7(c)

The continuity of o comes from the fact that if the map r is discontinuous
at some «, the triangle 7(«) is then lined. [

REMARKS. 1) Corollary 4.2 is also a consequence of our stronger re-
sult (5.4).

2) The word “hypersimplex” is introduced in [GM]. Observe that H is
obtained by taking the convex hull of the middle point of each edge of a
standard (m — 1)-simplex.

We also obtain the critical values of p (compare [Ha]):
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PROPOSITION 4.3. The set of critical values of u on G2(C") — Z,, or
G-»(R™) — Z,, consists of those points (xy,...Xy) € E,, safisfying one of the

following conditions :
a) one x; vanishes,
b) one x; is equal to 1;

c) there exist g; = 1 such that Y ,_, ex; =0, with at least two &;’s of
each sign.

REMARK. Points satisfying a) and b) constitute the boundary of =Z,.
Points satisfying c) are “inner walls”. Points satisfying a) correspond to non-
proper polygons. Those satisfying b) or ¢) are non-generic «’s (Condition b)
implies that there exist ¢; = 1 such that Z;“Zl gix; = 0 with all but one ¢;
of the same sign.)

Proof. The critical points of the moment map p are the points of G,(C")
for which the Uf'-action has a stabilizer of dimension bigger than 1. They are
the images of those (2 x m)-matrices in V,(C") for which the (U{" xy, Us)-
action has a non-discrete stabilizer. There are such points whose stabilizer is
contained in U}' x {1} ; they are the matrix with one row vanishing and their
values under g are the points of =, satisfying a). The other points give rise to
points in "P? = Ul /V,(C™) so that the action of U,/{center of U,} ~ SO;
has non discrete stabilizer. Those points are the lined configurations mpl
Their values in =, are the non generic «’s, which are the points in Z,,
satisfying b) or ¢). [

We have proven most of the main result of this section: for generic and
proper o, the space P3(a) is a Kihler sub-quotient of G,(C™).

THEOREM 4.4. For « € int 5, generic, Pi(oe) is a Kdhler manifold
isomorphic to the Kahler reduction U{"\p~Y (). The involution ~ is antiholo-
morphic and P*(a) can be seen as the real part of Pi(a).

Proof. By 4.1, one has P (@) =€) = UM\~ ' (@) and we have seen
in 3.9 that ®(a, b) = D(a. b)". [

We shall now compare the Kihler structure obtained on ?i(a) from
the Grassmannian to that introduced by Klyachko [KI] or Kapovich-Millson
([KM2], §3). Using the standard cross product x and scalar product (.,.) on
R’, these authors put on the sphere S? of radius r the complex structure J
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defined by

1
Jui=—xxv  (vETS
r

and the Kihler metric
A 1 /
A, 0) = —(u,0) = Z(nuxv) (v € TS
r

with associated symplectic form @(u, v) := (Zu x v). Let W(a) := [[-, S%,.
The map §: W, — R® defined by B(z1,...,2m) := Y iy % is the moment
map for the diagonal action of SO; on W,. The space P}r(a) thus occurs
as the symplectic reduction SO3\371(0).

PROPOSITION 4.5. The complex structure J and Kdhler metric h of 4.4

~

compare with those J and h of Kapovich-Millson in the following way :

J=1J and E(u,’u)zélh(u,v).

Proof. Starting from the Hermitian vector space M = M,,,(C) one
sees that P3(a) is obtained by two successive symplectic reductions

G(C™) =D~ (0)/U, and P(a) = UN\p (@)

(we use the notation of §3). One can perform the reductions in the reverse
order. We first get

UMY =[] CP,

where CP! is the quotient of the 3-dimensional sphere
{@,0) € C* | ful’ +|vf* = r}

by the diagonal action of U;. The moment map ®: M — H(2) gives a
a moment map (still called @) from the product of projective spaces into
Ho(2). One has a commutative diagram

H¢
HZICPI - ll oa

5| [E

Ho2) —Y— RO

~

<

where 1 : Ho(2) — R? ~ R x C sends the matrix < _Zu) to (u,2).

M
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To prove Proposition 4.5, it is enough to establish that for all a € CP,‘.,
the tangent map Tuo : T,CP! — Tyn)S; satisfies

T,p(Jv) = JT,¢(w) and ©(Tad(w), Ta0(v)) = 4w(v,Jv).

By U,-equivariance, we can restrict ourselves to a = [/r.0]. The tangent
space T,CP! is identified with {0} x C and one can take v = (0. 1) and
Jv = (0,7). One has ¢(a) = (r,0.0),

T,6(v) = (0,2¢/7,0), Tad(Jv) = (0,0,2/7) = JT,0(v)
and Q(Tang(v),Taqzﬁ(JU)) =4, while w(v.Jv)=1. [

REMARKS

(4.6) The results of this section show that the spaces Pi(a) for generic
o are the symplectic leaves of the Poisson structure on the regular part of
mp3 | or PP given in (3.13) and (3.14).

(4.7) If one works in the pure quaternions /H, the complex structure J
on S? becomes

Joy=L" wer,s’=m).

v
g
The sphere S,z. is a co-adjoint orbit of U;(H) and the Hermitian form w is
the Kirillov—Kostant form (see [Gu, Theorem 1.1]).

(4.8) The isomorphism between the symplectic reductions of the Grass-
mannian G,(C™) and the product of CP!’s that underlies our results 3.9,
4.4 and the proof of 4.5 is a symplectic version of the Gel'fand-MacPherson
correspondence ([GM] and [GGMS]). The fact that this isomorphism comes
from two reductions of M 1s the philosophy of “dual pairs” (see [Mo] and
the references therein).

5. THE GEL'FAND-CETLIN ACTION

On ™F* we have so far defined the length functions £ measuring the

~

distances between successive vertices. We now introduce d : "FfF — R™,

d(p) = (|p(D)], [p(1) + p2)].. ... [Z;" 1,o(i)l) the lengths of the diagonals
connectmg the Vemces to the origin. (Only m — 3 of these functions are new,
as d(p)1 =i €(p)1, a’(p),,, | = é(p),,,, and a’(p)m = 0. Hereafter we write only

¢;.d; and the p is to be understood.)
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