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(4.8) COROLLARY.

(1) If n is an odd positive integer, then Jones’ annular algebra J(n)
(with parameter § = —q — g~ ') is non-semisimple if and only if there exist
distinct odd integers s,t € n such that ¢ = 1.

(2) If n is an even positive integer, then Jones’ annular algebra J(n)
(with parameter 6 = —q — q~"') is non-semisimple if and only if ¢27! =1
or there exist distinct even integers s,t € n such that g% = 1.

Proof. By [GL, 3.8] the algebra is semisimple precisely when the bilinear
pairing ( , );. is non-degenerate on each cell representation (of J(n)); this
condition is equivalent to the vanishing of the determinant detG; .(n), which
by (4.7) immediately yields the stated condition.  []

§5. DECOMPOSITION MATRICES

(5.1) THEOREM. Let R be an algebraically closed field of characteristic
zero and q a nonzero element of R. Let =< be the weakest partial order on
the set A° defined in (2.6) such that (t,z) <X (s,y) if (¢t,z) and (s,y) satisfy
the hypotheses of Theorem (3.4) for q or ¢~ '. If (t,2) € A*, n € Z>o and
(s,y) € A%(n), then the multiplicity of the irreducible T“(n)-module L, (n)
in the cell representation W;,(n) of (2.6) is one if (s,y) = (t,z) and zero
otherwise.

Proof. Let R be a field and g € R. Let p: R[y] — R be the R-algebra
homomorphism defined by y +— ¢ + ¢!, where y is an indeterminate over
R. Suppose W is a free R[y]-module of finite rank with an R[y]-bilinear
foom (, ): W x W — R[y]. If R is regarded as a R[y]-module via the
homomorphism p, the free R-module Wz = R ®g[,; W inherits an R-bilinear
form (, Jg: Wg x Wg — R given by (1 ® x,1 ® y)r = p({x,y)). Choose
R[y]-bases By and B, of W and let G denote the associated gram matrix
of (, ). If this form is nonsingular (i.e. detG # 0), then it may be shown
that the multiplicity of the polynomial y — ¢ — ¢! in the determinant detG
is greater than or equal to the R-dimension of the radical of ( , )z. In fact
if we denote the multiplicity of the polynomial y — ¢ —¢~! in f € R[y] by
mult(f), then

mult(detG) = ) _ dimrad’

where rad’ denotes the image under ¢: W — Wr : w +— 1 ®@ w of the °
R[y]-submodule {w € W | {(w,v) € (y —q — g~ ')'R[y] for any v € W},
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(Since R[y] is a principal ideal domain, row and column operations may be
used to reduce the proof of this fact to the easy case when G is diagonal.)
We shall use this elementary result to give a bound for the dimension of the
radical of the restriction of ( , );. to W] (n).

Let ¢+ < s be non-negative integers of the same parity, n € Z>¢ and assume
the hypotheses of the statement. Consider T(g,; ). We shall compute the
determinant of the gram matrix Gj,(n) as a polynomial in y = x+ x~ 1. Our
first goal is to compute the multiplicity of y — g — ¢~! in this polynomial,
i.e. to compute mult(detG;,(n)). Let [ denote the order of g*. Since [n]y
and [7] are polynomials in y = x +x~' we may speak of the multiplicity

! in these polynomials and it is straightforward that

of y—qg—q~
1 if [# 1,00 and [ divides #,

0 otherwise,

mult [#]y = {

{ 1 if [ # oo and res;(n) < res;(i),
i

and hence mult {nj} = )
« 0 otherwise,

where res;(n) € {0,1,...,/— 1} is determined by res;(n) =n mod .
We next give an expression for mult([£;r]x/[s;r]x). Let r > s have the
same parity as s (or ) and write X = {0,1,...,/— 1}. Then there exist

unique elements k € Z and 7 € X such that r = kI + 7. Let 7 denote the
unique element of X such that k/+7 = +¢ mod 2/; define 5 similarly. Define :

1 if s <7<y,
ery=< -1 ifi<r<s5,
0 otherwise.

The function €/(r) satisfies
(1) @) = €7'(r) = €2 (r)
2) €(r) = —€r) .
It is easy to see that if 0 < ¢ < s < r, then

€/(r) = mult([t; 115 /[s;7]x) -
By Corollary (4.5) and Proposition (4.6), we have
(5.1.1) multdet G o(m) = > () dim W,(n).

r>s
r=t mod 2

If /=00 or s=1t or —t mod 2/, then €(r) = 0 and so the multiplicity
(5.1.1) is zero. For the remainder of this paragraph, assume that / # co and
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s # 4+t mod 2/. Let ' € Z be minimal such that # > s and ¢ £¢r= 0
mod 2/. Let s’ € Z be maximal such that ¥ > s and s’ +s5 = 0 mod 2I.
Then s+21 >t > s > s >t. Now in order to compute mult(det Gf,o(n)), we
partition the sum on the right side of (5.1.1) into three parts:

1) s<r<ys.
Q) ¢ <r<t.
3 <r.

For the terms in the first part, €/(r) = 0. For those in the second part €(r) =
1 and consequently, these terms contribute dim W;ﬁ oM => ., <p dim W,.(n)

to the sum. The terms in the third part have €(r) = —egl, (r) (by properties (1)
and (2) of the function €;(r)) and so these terms contribute mult(det Gg/,’o(n))
to the sum.

It follows that
(5.1.2) mult(det Gf}o(n)) = dim W;:’O(n) — mult(det va//’o(n)) )

Note that equation (5.1.2) should be interpreted as a recurrence relation for
mult(det Gf)o(n)), which together with the initial condition mult(det G;"O(n)) = {j
if n <t¢, determines the multiplicity.

Now fix n € Zx>q. Choose (t,z) € A such that 1t <» and t =n mod 2.
To prove the Theorem, we shall construct a composition series for W, ,(n).

If (¢,z) is maximal in A%(n) (with respect to <), then it follows from
Corollary 4.4 and Proposition 4.6, that rad,.(n) = 0; hence the irreducible
module L,;.(n) coincides with W, .(n) and the statement follows. '

Assume that (z,z) is not a maximal element of A% n) and choose
(s,y) € A%n) such that (s,y) > (¢,z) and s is minimal with respect to
this property. Then the hypotheses of Theorem (3.4) are satisfied (possibly
after replacing ¢ by ¢~ ') and so we have an injective ‘homomorphism
On: Wsy(n) — W, (n) of Tg (n)-modules. The quotient Q = W, .(n)/Im6,
has basis x4+ Im 6, indexed by standard diagrams p:t — n of rank strictly
less than (s—¢)/2. By (2.8), the image of 8, is contained in rad, ,(n), whence
the bilinear form ( , );. descends to Q x Q0 — R; its gram matrix (with
respect to the basis above) is Gf,z(n) and L;.(n) 1s the quotient of Q by its
radical which we denote by rad; ,(n). Consider, for the moment, TR .x- The
multiplicity mult(det G; ,(n)) = mult(det Gf,o(n)) by Corollary (4.4); it follows
from the remarks concerning linear algebra at the beginning of this proof that

(5.1.3) dimrad; ,(n) < mult(det G; o(n)) .
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If the order [ (of ¢?) is infinite, then (s,y) is the unique element of A“
such that (s,y) = (t,z). If [ is finite and s =¢ or —t mod 2/, then (s,y) is
the unique element of A? which covers (t,7). In either case, we saw above
that mult(det Gf,o(n)) =0 and so radi,z(n) = 0. Therefore Q = L;.(n) and the
composition factors of W, .(n) are L,.(n) together with those of W ,(n), as
required.

Assume that [ is finite and s # 4¢ mod 2/. Let s’ and ¢ be as above
and y = ey~! where € = ¢¢™/2 = +1. Then (s',y') is the unique element
of A% such that (s',y") = (¢,z) and (s',y") # (s,y). If s > n, then the
initial condition associated with (5.1.2) shows that mult(det Gf,o(”)) = (0 and
SO radi_,(n) = 0; hence Q = L, -(n) and the statement of (5.1) follows as in
the previous paragraph.

Finally, assume that s’ < n. By Theorem (3.4) (with ¢! replacing
q), there exists an injective T9(n)-homomorphism 6): Wy v (n) — W, .(n).
Thus Ly (n) 1s a composition factor of W, .(n). Arguing by induction in
the poset A, we may assume that Ly v (n) is not a composition factor of
W y(n) =2 Im(8,) since (s',y") ¥ (s,y). It follows that the irreducible module
Ly (n) 1s a composition factor of radﬁ}_,_(n) and we have, using (5.1.3),

dim Ly y(n) < dimrad; () < mult(det G, o(n) .
Arguing as above with (s’,y’) in place of (¢,z) we have
dim Ly () = dim Q' — dim(rad}, , (n)) > dim WY, , (n) — muli(det G, ,(n)).

Now (5.1.2) asserts that the two ends of this chain of inequalities are equal.
Hence we have equality at every step and in particular Ly 4 (n) 1s 1somorphic
to radij_.(n). Thus the composition factors of W, .(n) are L;.(n) (if ¢> #0 or
(t,2) # (0,9)) and Ly ,(n) together with those of W (n), as required. [

(5.2) COROLLARY. Assume the hypotheses and notation of Theorem 5.1
and let J(n) be Jones™ annular algebra (see (2.10)). If (t,z) € A%(n) is such that
t >0 and 7' =1, then the J(n)-module W, -(n) has composition factors L; (n)
indexed by (s,y) € A(n) such that (s,y) >= (t,z). The remaining cell module
Wo,/M (2.10) has composition factors Ly y(n) indexed by (s,y) € A%n) such
that (s,y) = (0,¢) -and (s,y) # (2, 1).

The next result is implicit in [DJ] and may be found in [Ma], [GW]
and [W].
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(5.3) THEOREM. Let R be a field of characteristic zero, let g be a nonzero
element of R and let T(n) = Tg ,(n) be the Temperley-Lieb algebra over R,
with parameter q. If n,t € L>o and s € A(n) (2.3) then the multiplicity of
the irreducible 'T(n)-module Lg(n) in the cell representation W, (n) (2.2) is
one if

(1) s=t, or

(2) q* has finite order |, t+21>s>t and s+t+2=0 mod 2/,

and zero otherwise.

Proof. Adopt the notation of the proof of (5.1). Let # € A(n) and note
that G,;(n) = G§+2(n). If there is no element s € A(n) such that (2) holds,
then the computations above show that mult(det G,(n)) = 0; hence W;(n) is
irreducible and the statement follows. If ¢ has finite order / and s € A(n)
satisfies (2), then Corollary (3.5) provides a nonzero homomorphism of T(n)-
modules 6,: Wy(n) — W,(n). Hence Ly(n) is a composition factor of W,(n)
and we have

dim L;(n) < dimrad,(n) < mult(det G,(n))

as in the previous proof. However,
dim L,(n) = dim W(n) — dimrad,(n) > dim W (n) — mult(det G4(n)) .

Now (5.1.2) again asserts that the ends of this chain of inequalities are equal.
Therefore we have equality at each step and in particular Ly(n) 1s 1somorphic
to rad,(n). [J

(5.4) REMARKS.
(1) The decomposition matrices in Theorems (5.1) and (5.3) are “inde-

pendent of n”; one may therefore speak of the multiplicity of L;, in W,
and of L, in W;.

(2) Since the dimension of W;.(n) is known (1.12), the multiplicities
of (5.1) may be used to give formulae for the dimensions of the irreducible
modules L, ,(n). These formulae are just the inversions of the relations

n
((n—t) /2> =1+ > Iy

(s, ))EA®
(s,y)~(t,2)

where [;,(n) = dimLg,(n). A similar remark applies to the dimensions
of the irreducible modules for the Jones and Temperley-Lieb algebras.
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(3) The proofs of (5.1) and (5.3) yield the radical series of the modules
concerned; L, (n) lies in the k-th layer of W, .(n) if the length of the interval
between (s,y) and (f,z) in A? is k. One might expect the layers of' the radical
series of the cell modules to coincide with the layers (denoted rad’ above) of
some “Jantzen filtration” of the cell representation and its bilinear form (after
scaling the indices).

(4) If the characteristic of R times the order / of g* exceeds the cardinality
of n then Theorems (5.1) and (5.3) remain valid without the restriction that
R have characteristic zero.

(5) As indicated in (2.9.1), all of our results may be interpreted as
statements about the representation theory of TL? ; in particular, they illuminate
a part of the modular representation theory of the affine Hecke algebra H;(g).
One could ask which irreducible representations of the affine Hecke algebra
correspond in the Kazhdan-Lusztig parametrization [KL2] to our L, .. A similar
comment applies to the connection with the work [Gj].

REFERENCES

[Ch] CHEREDNIK, L. V. A new interpretation of Gel'fand Tzetlin bases. Duke Math.
J. 54 (1987), 563-577.

[DJ] DIPPER, R. and G. JAMES. The g-Schur algebra. Proc. London Math. Soc. (3)
59 (1989), no. 1, 23-50.

[FG] FAN, C.K. and R. M. GREEN. On the affine Temperley-Lieb algebras. Preprint.

[FY] FREYD, P.J. and D.N. YETTER. Braided compact closed categories with
applications to low-dimensional topology. Adv. Math. 77 (1989), 156—
182.

[Gj] GROJNOWSKI, I. Representations of affine Hecke algebras (and affine quantum
GL,) at roots of unity. Internat. Math. Res. Notices, 1994, no. 5, 215ff.

[GL] GRAHAM, J.J. and G. I. LEHRER. Cellular Algebras. Invent. Math. 123 (1996),
1-34.

[Gr] GRAHAM, J.J. PhD Thesis. Sydney University, 1995.

[GW]  GooDMAN, FM. and H. WENZL. The Temperley-Lieb algebra at roots of
unity. Pacific J. Math. 161 (1993), 307-334.

[J1] JONES, V.E.R. Hecke algebra representations of braid groups and link
polynomials. Ann. Math. 126, (1987), 335-388.

[J2] — A quotient of the affine Hecke algebra in the Brauer algebra.
L’ Enseignement Math. (2) 40 (1994), 313-344,

[J3] — Index for subfactors. Invent. Math. 72 (1983), 1-25.

[Ja] JAMES, G. Representations of General Linear Groups. London Math. Soc.

Lect. Note Series 94. Cambridge University Press, Cambridge, 1984.

[KL1] KAZHDAN, D. and G. LUSZTIG. Equivariant K -theory and representations of
Hecke algebras. Proc. Amer. Math. Soc. 94 (1985), 337-342.



	§5. DECOMPOSITION MATRICES

