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2.2 A Fubini counterexample

In this section, we give an example of (2). Let A be as in (5) and define

/'U by

0 if A is meager,
(11) MA):=

tt 1 if A is comeager.

This is possible, since no set A C R is simultaneously meager and comeager,
for otherwise 0 A n Ac would be comeager, in contradiction to Baire's
theorem. It is easy to check that p is a probability measure on (R, A).
Let again v := À := Lebesgue measure on B := B(R), and choose A e A
meager with A(AC) 0. Then lA{- +y) is A-measurable with

[ lA(x + y) dfi{x) ß(A-y) 0 (y G R).
J R

On the other hand, we have

/ lA(x + y) dv(y) À (A — x) oo (x G R).
JR

Hence (2) is obviously true in this case.

3. Measurability

Here is a positive result, having a certain measurability property of F
from (1) among its conclusions. An application of this occurs in Mattner
(1999).

3.1. THEOREM. Let (X,A,ß) and (y,B,v) be (J-finite measure spaces,
let f: X x y —>• [0, oo] be a function measurable with respect to the product
a-algebra A®B, and put

A0 :=cr({f(-,y) : y e y}),
B0:=<r( !/(>.•) :xeX}),

To := {A G A : 3 A0 A with A=A0 [yu]}

Bo:= {BeB: 350 A0 with [i/]}
To <S> Bo:= {Ce A®£> : 3 Co G To ® So C Q [yu ® f]} •

TAen / « To <E> ßo -measurable,jy/(,}')dv(y) is To and

fix, djiix) is Bq-measurable.
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Here and in what follows, we write A Ao I>] for /x(AaAo) — 0. Below

we also use the corresponding notation / [/i] for functions, meaning

M({x : fix) A g(x)}) 0.

3.2 Remarks

Let us retain the notation and assumptions of Theorem 3.1.

a) The parameter integral J / (•. v) (//'( vi need not be Ao -measurable and /
need not be Ao <8> Bo-measurable, as the example in 2.1 shows.

b) The function / need not be Ao ® So -measurable. As an example proving

this remark, we may take (X.A, /u) := := ([0,1],B([0,1]), A1)»

D := {(x,x) : xG[0,1]}, and / := Id[Wenow write \d for ri-dimen-

sional Lebesgue measure.] Then

A0 Bo{A G £>([0,1]) : A countable or cocountable}

Ao So {A G BiR). 1]) : A'(A) G {0,1}}

and we claim that / is not Ao ® S0 -measurable. To prove this, put

C := {C G B([0, l]2) : (a2(C),J lc(,v..vu/A'i.v) G {(0, 0), (1,1)}}

Then C is a <7-algebra containing [A x B : A G Ao, B G Bo}, and hence

satisfies But D ^ C, so that D ^ Aq Bo.

c) Let us write more explicitly Ao(ß) in place of Ao- From Theorem 3.1,

we may deduce the measurability of F := ff(-,y) dv(y) with respect to

the intersection being over all A and n as in the theorem.

This, however, must not be confused with the more restrictive property
of universal Ao -measurability of F [see Cohn (1980), pages 280-283,
for the definition and for illuminating facts]. Indeed, our measures fi are

supposed to be defined on some A rendering f A <g> 23-measurable,

and not merely on Ao or its fi -completion. For example, in the

situation of 2.1, one can use the measure /jl from (11) to deduce

that the a-algebra of all universally Ao -measurable sets is contained
in Ao {A c R : A meager or comeager}. Since Ao differs from
Ao only by non-Borel sets, we see that F from (3), (7), (8) is not
universally Ao -measurable. By the way, the known fact that /i from (11)
can not be extended to a measure on 23(R) [see Oxtoby (1980), page 86]
follows from our present considerations, since otherwise we would have

Ao(fji) Ao D B(R) Ao, and Theorem 3.1 would yield Ao -measurability

of F.
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3.3 Proof of Theorem 3.1

Obvious arguments show that we may assume in addition that

(12) p, v are finite and / is bounded.

The proof of the theorem splits into two parts as follows.

CLAIM 1. Under the assumptions of the theorem and (12),

(13) F \= J f(',y)dv(y)

is Ao -measurable.

Proof Let us first recall the "mean value theorem" for vector valued

integration : Let f be a topological vector space, (O, A, p) be a measure

space, and g : O —» E be a function. Then an x E E is called the weak (or
Pettis) integral of g, and we write f g dp := jc, if

(i) the dual space E' of E separates points on E,
(ii) the scalar function {y,g(-)) belongs to £l(Q,A,p) for every y G E',

and

(iii) f (y,g(uj)) {y,x)forevery y e E'.
[This is the definition adopted by Edwards (1965), p. 566, and by Rudin

(1991), p. 77.] If now E is in particular locally convex Hausdorff and p is

bounded, then the weak integral, if it exists, necessarily satisfies

with conv indicating convex closure. This "mean value theorem" is surely
well known. It follows easily from the Hahn-Banach theorem : Apply Theorem
3.4 (b) of Rudin (1991) to A := {f g dp} and B := p(Q) - conv#(Q).

We now start with the proof proper. The functions /(-,y): X —» R, as well
as F from (13), are A -measurable [by A®B -measurability off and by Fubini]
and bounded, and hence belong to CfX. A, p). Let [/*(-, y)], [F] E L1 (X, A, p)
denote their corresponding equivalence classes. We claim that

in the weak sense recalled above, applied to the Banach space E Ll(X. A, p)
with dual space L°°(X,A,p). To prove this, let h E [h] e L°°(X,A,p). An
obvious Fubini calculation, using the definition of F and the A 0 B -measurability

of /, yields

(14)

(15)
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{[h], [F]) f h(x)F(x)d/i(x) [ ([h],\f(-,y)]) dviy),
7A 7A

which confirms (15). [Actually, (15) is even true with the right hand side read

as a Bochner integral, but we do not need this fact here.] We now use that

each /(-,y) is Ao-measurable, where of course Ao C A. This implies that

the function y [/"(-, y)] takes its values in

S := {<Ê> g Ll(X7A,p) : 3 Ao--measurable <p G O}

which is easily seen to be a closed subspace of L1 (A, A. /i). The mean value

theorem (14) now yields [F] G S, which is the desired conclusion.

CLAIM 2. Under the assumptions of the theorem and (12), and assuming

the truth of Claim 1, f is Ao <8> Bo-measurable.

Proof We consider the restrictions

do := d\j0 7 ^0

and define a function r : A.q 0 £>o [0, oo] by

(16) t(C) := f [ f(x,y)lc(x,y)dV0(y)d~Fo(x) (C e A0 0 B0),
Jx Jy

and we emphasize that the right hand side has to be read as an iterated

integral. In order to show its existence, we have to check that the function

x I—* fyf(x,y)lc(,x,y)dvo(y) is Ao -measurable. For the special case C Ax B

with A G Ao and B G Bo, this follows from Claim 1, applied to Ao

in place of Ao and /(x,y)lß(y) in place of /(x,y), and using Ao Ao-
The general case follows as usual via Sierpinski's lemma [Satz 1.6.8 in
Elstrodt (1996)]. Thus r is well-defined. It is easily checked that r is a

measure, and that every set of ~p0 G) z7q -measure zero is of r -measure zero
as well. Hence the Lebesgue-Radon-Nikodym theorem yields the existence of
an Ao 0 Bo -measurable function /: X x 3^ —» [0, oo] such that

t(C) J fdji0 ®V0 (C £ Ao®

By (16) and Fubini, this implies in particular

(17) J J f(x, y)dVoiy)dß0(x) J Jf(x,
Ao Bo Ao Bo

(Ao G Ao, Bo G Bo). Since, using (12), both sides in (17) are always finite,
we may conclude for every B0 G Bo :
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[ f(',y)du0(y)= [ f(-,y)dv0(y) [ijl0].
dß0 JBo

Trivially, this remains true if [p0] is replaced by [p\, and an integration yields

(18) J J f(x, y) dv0(y) dp{x) J J /(*, y)du0(y) dp(x)
A Bo A Bo

(A G A, Bo G £>o). We now want to interchange the order of integrations.
Since / is trivially A 0 Bo -measurable, we may obviously do this on the

right hand side of (18). To do the same on the left hand side, we rewrite it
successively as

/ / y) dv(y) dfi(x) / /(*, y) d/jb(x) dviy) / fix, y) dß(x) düö(y),
J A. JBo dBo JA J Bq dA

where the last equality follows from a second application of Claim 1, with
the role of the variables interchanged. Thus (18) yields

(19) J Jf(x,y)dn(x)dV0(y) J
Bo A Bo A

(A G A, Bo G Bo). Now the argument leading from (17) to (18) can be

repeated to lead from (19) to a corresponding statement with B in place of
Bq, v in place of To, and B in place of Bo, which is equivalent to

/ fdfi^v— / fd/i<S>TJ (A G A, B G B).
dAxB dAxB

This shows that f — f [ /i v\, which yields the desired conclusion.
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