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This implies that

1
#_S|A|f2 = Zfz(’Y) )

yEA
1
SsE Al < D P < Moal.
YEOA

By Theorem 2, the first condition implies the second one. [

REMARK. The proof of Theorem 3 can easily be generalized to the
case where P is a convolution operator with a finitely supported probability
measure.

3. REMARKS

We will now make some comments about Theorems 2 and 3. We will
state some theorems about the existence of eigenfunctions for the Markov
operator and discuss whether one can take in the generalized Fglner condition
the eigenfunctions to be in L2(X, ).

For simplicity we will suppose that X is a connected, locally finite graph
(i.e. the degree of each vertex is finite) and we consider the simple random
walk going with equal probability from one vertex to any of its neighbors. We
associate with this random walk the simple random walk operator P defined by

Pf(v) = > fw) for fePX,N)

wn~v

N()

where N(v) is the degree of vertex v in X (i.e. the number of edges adjacent
to v), where w ~ v means that w and v are connected by an edge and
where [*(X,N) is the space of real-valued functions f on the vertices of X
such that ) . f*(x)N(x) is finite.

3.1 EXISTENCE OF EIGENFUNCTIONS

THEOREM 4 ([20]). Let X be an infinite, locally finite graph and let P
be the simple random walk operator on I*(X,N). For any X\ > ||P|| there
exists a positive eigenfunction f of P with eigenvalue )\, i.e.

Pf(x) = M(x) and f(x) >0 for xe X .

For )\ < ||P|| there are no positive eigenfunctions of P with eigenvalue .
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Proof. There are several proofs of this theorem. In [20] one can find the
proof where the analogue of Perron-Frobenius theory is developed and in [11]
the truncation method is used. L]

3.2 EIGENFUNCTIONS IN [?

One can ask whether the positive eigenfunctions of the random walk
operator are in [*(X,N). The answer is no in the case when X is the Cayley
graph of an infinite group I' (see Theorem 5). But in the general case there
are examples of eigenfunctions which are in /*(X,N) (see Proposition 2).

3.2.1 THE CASE OF GROUPS

THEOREM 5. Let f be a positive eigenfunction of the simple random
walk operator P on the group T" generated by a finite symmetric set S, i.e.
Pf =M. If T is infinite then

> 1) = +oo.

yell

Proof.  Suppose the contrary, i.e. that there is a positive eigenfunction f
of the operator P for which the /* norm is finite:

Pf() = )‘an
Zfoz('y) < Fo00.

yel

The second condition implies that f; is not constant and so there are Yo,v1 € T
such that

Jo(yo) <Jo(m)-
Let us define the function f; as a translation of f, by YoV, L e,
A0 = folyor7 ).
The function f, being the translation of f;, is an eigenfunction of P, i.e.
Pfi = M.
So the function f defined as follows :
o) = max{fy(n, iy},

satisfies

Pf > \f.
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As fy and f; are in [A(I), the function f is in A(I") as well. The functions
fo and f; have the same /* norms and

f1(r) = fo(yo) < foln),

so there exists 7y, € I' such that

Ji(r2) > fo(r2).

Note that these two inequalities imply that f}_ fo with equality at some
points and strict inequality at some other points. Thus g = f— Jfo satisfies
g >0, g # 0, g vanishes at some points and Pg > Ag. Let us prove that this
implies Pf# )\f. Indeed, if we had equality then Pg = \g as well and thus
P'g = A\'g. Taking n large enough makes P"g non-zero at points where ¢
vanishes, a contradiction. We have thus shown that sz )\f with Pf;é )\f.

This means that
1PF oy > A Nl -

Hence

IP|| > A.

But this provides the desired contradiction because by Theorem 4 there
are no positive eigenfunctions of P with an eigenvalue smaller than the norm
of P. [

3.2.2 THE GENERAL CASE

It will be shown that there are examples of the infinite graph X and the
simple random walk operator P for which there is a positive eigénfunction in
I*(X,N). It was pointed out to us by the referee that when P is the adjacency
operator, examples of infinite graphs with positive eigenvalues in /> can be
found for instance in [5] (page 232).

Let X be a uniform tree (i.e. a simply connected graph) of degree 3. By
a theorem of Kesten (see [9]) one knows that ||P|| = 2y/2< 1. Let a and b
be two neighboring vertices in X. Now let X, be a graph which is the same
as the graph X, except that the edge (a,b) 1s subdivided into n vertices. Let
I,, denote the set of vertices a, b and added vertices which we label 1,...,n
(see Figure 1). Let P, be the simple random walk operator on X, . One has
|Pr]l @n—oo 1. In fact we will prove:
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FIGURE 1
The graph X

PROPOSITION 2. For n > 7 one has

i )>2\/§
3 3

Pl > cos(n

331

For any ny > 1 such that |Pn|| > 2v/2 the eigenfunctions of Py,

corresponding to the eigenvalue ||P,,|| are in *(X,,,N).

Proof. For n>7 let t = sin(5)/sin(;25) so that 0 <z < 1.

For x € X\ I, let |x| be the minimum of its distances from a and b. We

define the function f, on X, as follows:

! for y € X \ I,
f) = sin(TEY) /sin(-T5) fory=1,...,n
1 for y=a,b.

We verify that

Pofu(i) = cos<n13>fn(i) fori=1,....n

P.f.(x) = (cos 1(’113) +2cos<n:rL

On the other hand for n > 7 we have f < % and

> fn(X)N(X)—2Z2 3 (") 3 < 0.

X€EXu \In

Thus f, is in 2(X,,N) and

s
Py ,1>cos( )n.
Jn 2 n+3f

So we have proved the first part of Proposition 2.

3)>fn(x) for x € X, \ {1,...
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Let ng be such that

2¢/2

HPno le(Xno>N)—*12(XﬂoaN) = g > 3

Now let f be an eigenfunction of the operator P,, with the eigenvalue o, i.e.

P, f =of.
We want to show that f € [>(X,,, N). Suppose this is not true, i.e.
> FENG) = +oo.
XEXn,
By Theorem 2, there exists a sequence of subsets of X,,, Ay C X,, such that
> con SEONG)
> ren AN

As I,, is a fixed finite set, the sequence C; = Ay \ I, is non-empty for k
sufficiently large. We need the following:

3)

—k—o00 0.

LEMMA 3. One has
erack f2(x)N(x)
> e SPEON)

~—“k—o00 0.

Proof. 1f ) .4 F2(X)N(x) —t—oo 00 then the statement of the lemma is
clear. Suppose then that for all k
4) D FONE) < a < oo.

XEAL
If AyNnl,, =2 then Ay and C; coincide. So we are interested only in those
k for which Ay N1, # @. Let us consider the ball Bg of radius R centered
in a €1, (i.e. those vertices in X,, for which at most R edges are needed
to connect them to a).

Because of (3) and (4) we have that for k sufficiently large . 0A;NBgr = &
which, by the fact that Ay N 1,, # @, implies that Bg C A;. But R can be
chosen arbitrarily large and as f is not in *(X,N) we get

> FEONE) =00 00,
xXEA,
which- contradicts (4). This completes the proof of the lemma. []

On the subsets Cj the graphs X and X,, coincide. This implies:

2¢/2

1Pl 2 vy ey = @ >
which yields the desired contradiction. This ends the proof of Proposition 2. []
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