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Proof. Let ¢ be an automorphism of X. If ¢ fixes a point p of A,
then p can be chosen as a vertex or a midpoint of an edge. If p is a vertex,
then the preimage X’ of p under r; is a closed and convex subcomplex
of X. If p is the midpoint of an edge, X’ is a hyperspace and as a union of
walls, carries a natural cubical structure. In either case, X’ is a closed, convex
and ¢-invariant subset of X, and therefore ¢ is semisimple if and only if
the restriction ¢|xs is semisimple. Since moreover X’ is a simply connected
folded cubical chamber complex of nonpositive curvature and of dimension
lower than X, we can assume by induction on dim X that the action of ¢ on
all the trees A is axial.

Let a; be an axis of ¢ in AF (unique up to parameter). Let X; = r; ! (a;).
Since r; is surjective, X; is non-empty. Furthermore, X; is a closed, convex
and @-invariant subcomplex of X.

Set Y := X;. The image of Y; under r;, is path connected and ¢-invariant,
hence contains a. Let ¥, = Y; NX,. Then Y, is non-empty, closed, convex
and @-invariant. By induction we get that ¥ = X; N ... N X, is a non-empty,
closed, convex and ¢-invariant subcomplex of X. It is then sufficient to prove
semisimplicity for the restriction ¢|y. Note that ¥ = r~!(F), where F = R”
1s the flat

F= {(al(t1>7 s 7an(tn)) l I € R}

in the product of trees. Now ¢ operates as a translation on F, hence the
displacement of ¢ on F is constant, say = 6. Since r is injective, we can
consider Y as a closed subcomplex of F, namely a union of chambers. The
metric on Y is the induced path metric. It follows easily that there are only
finitely many possible values for the distance in ¥ from a point x to its image
wx, if the location of x in its chamber is given. [

4. NONEXISTENCE OF FREE SUBGROUPS

In this section we discuss the proof of Theorem 2 of the introduction. We
assume throughout this section that X is a simply connected folded cubical
chamber complex of nonpositive curvature and that I C Aut(X) is a group that
preserves the folding of X (this can be always assumed by passing to a finite
index normal subgroup if necessary) and does not contain a free nonabelian
subgroup acting freely on X. By equivariance of the maps r;, the same holds
for the actions of I" on the trees Af. Up to a subgroup of index two, there
are three possibilities for each particular i [PV]:
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(0) T fixes a point of A ;
(1) T fixes no point of A}, but precisely one end of A} ;

(2) T fixes no point of A}, but precisely two ends of A}.
Thus by passing to a subgroup of I' of index at most 2", we can assume that
the above three alternatives hold for all i. Corresponding to the alternative,
we say that i is an index of type 0, 1 or 2 respectively.

We first construct a homomorphism 4 = (h;, ..., h,): T — Z" as claimed.
If T fixes a point of A, we define A4; to be the trivial homomorphism. If T
does not fix a point of A, we let w; be the end or one of the two ends of
A7 fixed by I'. The Busemann function b;: A7 — R at w; is well defined up

to an additive constant (see [Ba], Section 1 of Chapter II). Since T fixes wj,

hi<¢) = bl(¢p) - bi(p)a P € AT ;

is a well defined homomorphism 4;: I" — Z, called the Busemann homomor-
phism. Note that h; is integer valued since A is a simplicial tree and I" acts
by automorphisms. This completes the definition of & = (k. ..., h,). We set

7 7

Aj =kerh; and A=A, =kerh.

PROPOSITION 4.1. A consists precisely of the elliptic elements of T,

Proof. 1If the action of I" on A} has a fixed point, then any ¢ € ' is
elliptic on A; and A; =T. If I does not have a fixed point in A¥, but fixes
a point & € Af(o0) and ¢ € T is axial on A}, then & is an end point of the
axis of ¢. Then h;(¢) # 0. Hence by Proposition 3.5, any ¢ € A is elliptic
on X. Conversely, if ¢ €T is elliptic on X, then ¢ € A. []

For the proof of the other assertions of Theorem 2 we need some more
preparations.

LEMMA 4.2, Let A be a simplicial tree on which T acts by automorphisms.

Suppose A fixes a point of A. Then either T fixes a point of A or exactly
two points in A(c0).

Proof.  Since A is a normal subgroup of T, the set ® of fixed points of
A is T-invariant. Now @ is a subtree of A, hence we can assume @ = A.
Then the quotient action by I'/A on A is well defined.

Suppose that I'/A contains an element ¢ which is axial on A. Since /A

is abelian, it leaves the unique axis of ¢ invariant and fixes the endpoints of
the axis.



74 W. BALLMANN AND J. SWIATKOWSKI

Suppose now that all elements of I'/A are elliptic on A. Let ¢,..., ¢, be
a system of generators. The set of fixed points of ¢ is a I'/A-invariant subtree.
Replacing A by this subtree, we can assume that ¢; = id,. The quotient of
I'/A by the subgroup generated by ¢; is abelian and has a system of k — 1
generators. Induction on k shows that I has a fixed point. [

If i is an index of type 0 and p € A} a fixed point, then X' := r7!(p) C X
is closed, convex and I'-invariant. In particular, X'(co0) C X(c0) is I'-invariant.
Although X’ is not a subcomplex if p is not a vertex, it is parallel to the
walls with label i in the chambers it intersects. Hence we obtain a natural
cubical structure on X’ with a folding onto an (n — 1)-cube, and T" preserves
this cubical structure and folding. Hence by passing to such subspaces if
necessary, we can assume that no indices of type O occur.

Let i be an index of type 2. Let «;, w; € Af(0c0) be the fixed points of
I' and o; the unit speed geodesic from «; to w;. Then o; is I'-invariant and
A; = Stab(c;(t)) for all + € R. Hence X' = r;!(im 0;) is a closed, convex
and I -invariant subcomplex of X. Hence by passing to such subspaces if
necessary, we can assume that A7 = im o; = R for all indices i of type 2.

PROPOSITION 4.3. [If there are no indices of type 1, then there is a T -
invariant convex subset E C X isometric to a Euclidean space of dimension
k€{0,...,n} and an exact sequence

0—=A—->T —=7ZF—=0

such that A fixes E pointwise and such that the quotient T/A =2 ZF acts on
E as a cocompact lattice of translations.

Proof. After reductions as above we can assume that all indices are of
type 2, that A¥ = R for all i and that A fixes each point of [ A;. Since r
is an injection, A fixes each point of X.

The image im A of the homomorphism % is a subgroup of the group
Z", hence it is isomorphic to Z* for some k < n. Thus we may identify
the quotient group I'/A with ZF. Consider the quotient action of ZF =T'/A
on X, which is well defined since A acts trivially on X. This action is free
and the elements are semisimple by Proposition 3.6. Applying the Flat Torus
Theorem, see [CE] and [BH], we get that there exists a Zf-invariant convex
subspace E C X, isometric to k-dimensional Euclidean space, such that ZF
acts on it as a cocompact lattice of translations. L]

o
o




ON GROUPS ACTING ON CUBICAL COMPLEXES 75

We now discuss the more difficult case that indices of type 1 occur. As
explained above, we can assume that no indices of type O occur and that
AF = R for all indices of type 2.

Choose a vertex xp € X as an origin. For indices of type 2 choose the
parameter on the above geodesics o; such that ¢;(0) = ri(xp). For indices
of type 1 we denote by w; € A7(c0) the corresponding fixed point. For
these indices, we let o;: [0,00) — A} be a unit speed geodesic ray with
0,(0) = ri(xp) and o;(c0) = w;.

We set F = 1m o; X --- x im o,. Note that F is a closed and convex
subspace of [[A;. We also define a geodesic ray

0:[0,00) = F by o) = (01(1),...,0u(0).

By construction, o(0) = r(xg).

LEMMA 4.4. Stab(o(t)) — A; and Stab(o(t)) — A as t — oo, where the
limit of groups is understood as the union of increasing family.

Proof. Let ¢ € A;. Then ¢ fixes w; = o;(c0). Therefore ¢ o o; is
asymptotic to o;. Now A is a tree, hence ¢ o 0;(t) = o;(t + ¢) for all ¢
sufficiently large, where ¢ is some constant independent of ¢. Since ¢ € A;,
¢ =0 and therefore ¢ € Stab(c;(r)) for all ¢ sufficiently large. ]

COROLLARY 4.5. There exists a sequence (x,,) in X such that Stab(x,,) — A.

Proof.  We observe that Stab(x) C A for all x € X. Now the assertion
follows immediately from Proposition 3.5 and Lemma 4.4. [

LEMMA 4.6. If the group T fixes precisely one point w; € A7 (c0), then
A M Stab(o(t)) has infinitely many jumps as t — oo.

Proof. Let ¢ € A C A;. By Lemma 4.4 there is ts =2 0 such that
¢ € Stab(o,(r)) for all 7 > t4. Hence if AN Stab(o;(¢)) = AN Stab(c;(¢)) for
all ¢,¢ sufficiently large, then A C Stab(o,(2)) for all ¢ sufficiently large. By
Lemma 4.2, I either fixes a point of A¥, which is excluded by our reductions

above, or I" fixes exactly two points of A¥(co), which is in contradiction to
the assumption. [

LEMMA 4.7. Let (x,) be a sequence in X such that Stab(x,) — A
and ~,,: [0,s,] — X be the unit speed geodesic from xq to x,,, where
Sm = d(xo,Xm). Then given a constant ty > 0, there exists mo such that
Sm 2>ty and r o v, ([0,50]) € F for all m > .
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Proof. For those i for which ' fixes exactly one point w; € Af(c0)
we choose ¢; € A such that ¢; ¢ Stab(oy(r)) for t < 1y, see Lemma 4.6.
By assumption, there is mygy such that ¢; € Stab(x,,) for all m > my and
all such i. Now r; o, 1s a monotonic curve in A} from o;(0) = ri(xo)
to r;(x,). By equivariance of r;, ¢; € Stab(ri(x,,)) for all m > my. On the
other hand, r; o 0 has speed < 1, hence by the choice of 7y, s, > fp and
ri(ym(0) € 0:([0,5]) for 0 <t < 1.

The claim follows since the image of r; is o; for those i for which I
fixes exactly two ends of A¥. [

LEMMA 4.8. Given ¢ € I, there is a constant ¢ = cg such that
d(p(p),p) < c¢ for all p € F.

Proof. We show that d;(¢(p), p) < ¢; for each point p in the image of o;.
This 1s clear for those indices i for which I' fixes exactly two ends of Af.
Consider some other index i. Then o; i1s defined on [0, c0).

If ¢ is elliptic on A}, then ¢ € A;. By Lemma 4.4, there exists a constant
ty such that ¢ fixes o;(¢) for all r > t4. We conclude that di(¢(p),p) < 2ty
for each point p in the image of o;.

We assume now that ¢ is axial on A and let p be an axis of ¢ in A]. We
parametrize p such that p(co) = w;. Since A’ is a tree and o;(c0) = p(c0),
we can actually choose the parameter such that o;(r) = p(z) for all 1 > 14,
where t4 is an appropriate constant. Now ¢(p(1)) = p(t+7) for some constant
7 independent of . We conclude that d;(¢(p),p) < 2ts + 7 for each point p
in the image of o;. [

PROPOSITION 4.9. Suppose that indices of type 1 occur. Then
(1) A does not fix a point of X ;

(2) T fixes a point in X(c0). More precisely, if (x,,) is a sequence in X such
that Stab(x,,) — A, then after passing to a subsequence if necessary, (x)
converges to a fixed point £ € X(oco) of T.

Proof. The first assertion is an immediate consequence of Lemma 4.7.
As for the proof of the second assertion, let (x,) be a sequence in X with
Stab(x,,) — A. Let v,,: [0,5,,] — X be the unit speed geodesic from xy to x,,
as in Lemma 4.7. Note that r oy, is a sequence of unit speed curves (with
respect to the metric d(z), for which r restricted to any chamber of X is an
isometry) in [] Af. For each constant #o > 0, ro,([0, #]) is contained in F
for all m sufficiently large. Now F is locally compact, hence a subsequence of
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the sequence of curves ro-y, converges locally uniformly. By Proposition 3.4,
the corresponding subsequence of the sequence of unit speed geodesics
converges locally uniformly. By definition, this means that the corresponding
subsequence of (x,) converges to a point £ € X(c0).

Let ¢ € T and choose ¢ = ¢y as in Lemma 4.8. Let #p > 0 be given. By
Lemma 4.8 we have r o ,(ty) € F for all m > mgy. By Proposition 3.4 and
Lemma 4.8, we have d(¢(Vn(t0)), Ym(t0)) < v/ncy for all such m. Now cg4 is
independent of 7y, hence ¢(&) =¢&. [

We now complete the proof of Theorem 2 of the introduction. By
Proposition 4.1, A = kerh consists precisely of the elliptic elements of I'. If
indices of type 1 do not occur, then Proposition 4.3 applies: If k& = 0, then
I' 2 A fixes a point of X and possibility (1) holds. If k¥ > 0, then possibility
(2) holds. If indices of type 1 occur, then possibility (3) holds by Proposition
4.9 and Corollary 4.5. Note that Stab(x) # A for any x € X in this case since
A would have a fixed point otherwise.

5. PARALLEL TRANSPORT IN A CUBICAL MANIFOLD
AND THE PROOF OF THEOREM 3

Let X be a cubical manifold of dimension n. Given two chambers P and
Q in X with a common face of dimension n — 1, we define tpp: P — Q to
be the translation which moves each point p of P along the unit geodesic
segment starting at p and orthogonal to the common (n — 1)-face of P to the
end point in Q. The map fpp is an isomorphism and isometry of P with Q.

Given a gallery m = (Py,...,P,) in X, the parallel transport along m is the
isomorphism #,: P; — P, given by

tw :=1p,_p, O Olppy Olpp,.

LEMMA 5.1.  Let X be a simply connected cubical manifold and assume
that the number of chambers adjacent to each face of codimension 2 in X
is divisible by 4. Then for any two chambers P and Q in X, the parallel
transport tr along a gallery m connecting P and Q is independent of .

Proof. It is enough to show that the parallel transport along any closed

ggﬁigallery is the identity. Let 7 be such a gallery with initial and final chamber P.
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