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7. Examples

We give here examples of regular graphs and when possible compute
independently the series F and G. In some cases it will be easier to compute
F, while in others it will be simpler to compute G first. In all cases, once

one of F and G has been computed, the other one can be obtained using
Corollary 2.6.

In all the examples the graphs are vertex transitive, so the choice of a is

unimportant. To simplify the computations we choose f * and the length
labelling.

7.1 Complete graphs

Let X — Kv, the complete graph on v > 3 vertices. Its degree is d v— I.
To compute F and G, choose three distinct vertices *,$,# (the choice is

unimportant as Kv is three-transitive). Define growth series

F(u, t) the growth series of circuits based at a ;

F'(w, t) the growth series of paths ir from $ to * with 7r^ # ;

F"(u,t) the growth series of paths ir from $ to * with 7r^ *.
Then

F 1 + (y-l)t [(v - 2 + |,

F' ^ t^F" + (v - 3 + U)F']

F"=t\l+{F-1)^~2+ "1
L V — 1 J

Indeed the first line states that a circuit at * is either the trivial circuit at a,
or a choice of one of v - 1 edges to another point (call it $), followed by a
path from $ to ~k,this path can first go to any vertex of the v — 2 vertices
(say (#) different from * and $, and thus contribute or go back to *
and contribute F" and a bump.

The second equation says that a path from $ to * starting by going to
# can either continue to contributing go to any of the - 3 other
vertices contributing F',orcome back to $, contributing and a bump.

The third line says that a path from $ to * starting by going to * continues
as a circuit at * ; but if the circuit is non-trivial, then one out of 1 times
a bump will be contributed.
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Solving the system, we obtain

1 + (1 - u)t l-(v- 2)t + (1 - u)(v - 2 + u)t2
F(w, t)

1 (v 2 + u)t 1 -\-1 -f- (1 — u)(v — 2 + u)t2

We then compute

1 - (v - 2)*
G(0-F(1,0-

F(0,t)

(1+0(1 - (v - 1)0 '

(1 + 0(1 — (v — 2)t + (u — 2)0)
(1 — (v — 2)0(1 + t + (v — 2)0)

7.2 Cycles

Let X Ck, the cycle on k vertices. Here, as there are 2 proper circuits
of length n for all n multiple of k (except 0), we have

1 + 0

Obtaining a closed form for G is much harder. The number of circuits of
length n is

E (E
i£Z:i=0 [k], i=n [2] ^ 2

from which, by [Gou72, 1.54], it follows that

i i i l
1 - (C + C-1)' * ^ 1-2cos(+)r

'

It is not at all obvious how to simplify the above expression. A closed-form

answer can be obtained from (2.3), namely

+2 + (+ + (i -
(2 t)2-(1- Vl -4+ (20* - (1 - x/1 -4f+ '

or, expanding,
t/2 / ;

(M' + £(l-4.T(2m
G(t)m~°

(k+l)/2

E (l — 4f2)"'(^V 2 \2m- 1

However in general this fraction is not reduced. To obtain reduced fractions
for F(u, t) (and thus for we have to consider separately the cases where

k is odd or even.
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For odd k,lettingA - : 1, we obtain

F(u, t)

J>£(-r)m(l + (1 - kV)*
1 (1 w)? m=0

1 — (1 + U)t ^

^a^l + d-W"
m—0

G(t)
m 0

(i-2o(E«»<m
m=0

where

s

(-)1

(-)
ffl+i

m— 1

2

if m 0 [2].

if m 1 [2].

For even k, with k — 21,

1/2

F(m, 0
f ;

Er^P^k-^o-a-W"2"z—' — m\m

(£-l)/2_ _
(i - (i+«)2t2)( e m

K-^ra - (i - KW_i-2w)
m=0

G(t)
ra=0

(l-\)/2
(1-

1 — m

=o

,2\ra(-O

expressed as reduced fractions.

fc- •
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The first few values of F, where stands for 1 + (1 - u2)t2, are:

k F(w, t) k F(m, t)

1
1 "4~ (1 — M)t

2
1 — (1 + u)t 1 — (1 + «)T

3
(1 + (1 - k)0(D - t)

4
<N1o

(1 — (1 + M)0(D + 0 1 -(l + «)2f2

5 11(NIs1+
6

en1
(1 - (1 + u)t)(a2 4-12) (1 -(1 +u)2t2)(D2 -t2)

7 (i + (i - u)t)(n3- a2t - + 3)
Q 4 - 4D2t2+ 2t4

(1 - (1 + n)0(O3 + D2t - 2Df2 - f3)
o

(1 - (1 + «)2f2)(D2 - 2f2)

9
(I + (1 - «)«)( - 0(û3 - 3DÏ2 - i3)

10 4 - 5D2r2 + 5r4

(i - (i + «)«)( + 0(n3 - 3D + 3) (1 - (1 + «)2r2)(G4 - 3 + t4)

These rational expressions were computed and simplified using the

computer algebra program Maple.

13 Trees

Let X be the d-regular tree. Then

F(0,0= 1

as a tree has no proper circuit; while direct (i.e., without using Corollary

2.6) computation of G is more complicated. It was first performed
by Kesten [Kes59]; here we will derive the extended circuit series F(u,t) and

also obtain the answer using Corollary 2.6.

Let T be a regular tree of degree d with a fixed root *, and let Tf
be the connected component of * in the two-tree forest obtained by deleting
in T an edge at *. Let F(u, t) and F'(w, t) respectively count circuits at *
in T and TL For instance if d 2 then F' counts circuits in N and F
counts circuits in Z. For a reason that will become clear below, we make the

convention that the empty circuit is counted as ' 1 ' in F and as '«' in F'.
Then we have

1

F' u+(d- 1 )tF't

F 1 + dtF't-

1 — (d — 2 + u) tF't
1

1 — (d - 1 + u) tF't

Indeed a circuit in T' is either the empty circuit (counted as u), or a

sequence of circuits composed of, first, a step in any of d — 1 directions, then
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a 'subcircuit' not returning to *, then a step back to *, followed by a step in

any of d — 1 directions (counting an extra factor of u if it was the same as

before), a subcircuit, etc. If the 'subcircuit' is the empty circuit, it contributes

a bump, hence the convention on F'. Likewise, a circuit in T is either the

empty circuit (now counted as 1) or a sequence of circuits in subtrees each

isomorphic to T'.
We solve these equations to

F'n AF (1 — M, t)

F(1 -u,t)

1 — u(d — u)t2 + ^/(l + u(d — u)t2)2 — 4(d — 1 )t2

2{d- 1)(1 - u2t2)

(d 2)(1 + u(d — u)F) + d\J(TT u{d — — 4{d — Y)t~

Using (2.3) and F(0, 0 1 we would obtain

i+Cj-i)(i^ggpg
G(0

V

1 -
or, after simplification,

l-^l-4(d-l)t2
2{d—l)t

G(t) 2(J"1}
d — 2 + d\J 1 — 4((i — 1)0

which could have been obtained by setting w 0 in F{\ - u,t).
In particular if d 2, then Z and

G« E
n>0

2n\ 1
r2"

\/l - 4?2

Note that for all J the d-regulartree X is the Cayley graph of
T (Z/2Z)*rf with standard generating set. If d is even, is also the
Cayley graph of a free group of rank 2 generated by a free set. We have
thus computed the spectral radius of a random walk on a freely generated
free group: it is, for {Z/2Z)*d or for Fd/2, equal to

2Vd^l(7.1)
d

Remark that for d — 2 the series t) does have a simple series
expansion. By direct expansion, we obtain the number of circuits of length
2n in Z, with m local extrema, as

(f2V" |F(«,t))

2

if m 1 [2],

1\
^2 if m0 [2],
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We may even look for a richer generating series than F : let

H(u, v,t)= Ye N[k, w][[f]]
7r: path starting at *

where 6 denotes the graph distance. Then

H{ 1, v, 0 F(l, 0 + dF'tvF + dF'tvid - 1 )F'tvF +
1 +F\Lj)tv

1 - (d- \)F'(\,t)tv
and as H is a sum of series counting paths between fixed vertices we obtain

H(u.v,t) from H{\,v.t) by extending (2.2) linearly:

H(l-U,v,f) FF
1 — u2t2 1 + u(d — u)t2

We could also have started by computing

m,v,o=1_(d_1)vt
>

the growth series of all proper paths in T, and using (2.3) and (2.5) obtain

//(I.t)~ i—a.-.-- .' •//—v y——,o,v
1 _2 ^ i—^/i—4-(rf—i)r2 ^2 V 2(d — l)r
1 ~ W I 2(^-1)? J

H{u, v,t)

2(d—l)t

1 — On2 (d — l)(4t2 + D2) 2(fi? — 1)7 + f
1 + u{d - w)r2 4(d - 1)20 - u2U2 2t-vU

where 1 + u(d — u)t2 — a/(1 + u(d — u)t2)2 — 4(J — 1)0.
Recall that the growth series of a graph X at a base point * is the power

series

p(t)
veV(X)

where 6 denotes the distance in X. The series H is very general in that it
contains a lot of information on T, namely

• H{u, 0, t) F(m, 0 ;

• i/(0, TO - ^(0 is the growth series of T ;

• H(l. 1, 0 — 1/(1 dt) is the growth series of all paths in T.

(Note that these substitutions yield well-defined series because for any i

there are only finitely many monomials having t-degree equal to i.)
We can also use this series H to compute the circuit series Fc of the cycle

of length k, that was found in the previous section. Indeed the universal cover
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of a cycle is the regular tree T of degree 2, and circuits in G correspond

bijectively to paths in T from * to any vertex at distance a multiple of k.

We thus have

Fc(u, t)

«'=1
where the sum runs over all k\h roots of unity and in

We consider next the following graphs: take a -regular tree and fix a

vertex *. At *, delete e vertices and replace them by e loops. Then clearly

1 +1
F(0'r) T3(^'

as all the non-backtracking paths are constrained to the e loops. Using (2.3),

we obtain after simplifications

2{d - 1)
(1 91 F(t) — —- —

d + e — 2 — 2e(d — Y)t + d — é)\/\ — 4{d — 1

The radius of convergence of G is

r 1 e — 1

min<
2 \/d — 1 d + e — 2e

1Â Tougher examples

In this subsection we outline the computations of F and G for more

complicated graphs. They are only provided as examples and are logically
independent from the remainder of the paper. The arguments will therefore

be somewhat condensed.

First take for X the Cayley graph of T (Z/2Z) x Z with generators

(0, -1) 41 % (0,1) ' Î ' and (1,0) ' ^ '. Geometrically, X is a doubly-
infinite two-poled ladder.

In Subsection 7.3 we computed

F t\
1 - (1 - U)2t2

Fz(u,t)L(1 + (1 - w2)f2)2 - 4f2

the growth of circuits restricted to one pole of the ladder. A circuit in A' is a

circuit in Z, before and after each step (| or j) of which we may switch to
the other pole (with a <->) as many times as we wish, subject to the condition
that the circuit finish at the same pole as it started. This last condition is

expressed by the fact that the series we obtain must have only coefficients of
even degree in t. Thus, letting even if) —

A9+/C-0
^ we have
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c<,)=eve"(rhf'4''A));
it is then simple to obtain F(u, t) by performing the substitution (2.3).

The following direct argument also gives F{u, t) : a walk on the ladder
is obtained from a walk on a pole (i.e. on Z) by inserting before and after

every step on a pole a (possibly empty) sequence of steps from one pole to
the other. This process is expressed by performing on Fz the substitution

t2
11—> t T t2 T t2 u T t^u2 T * * * — t T

1 — tu

corresponding to replacing a step on a pole by itself, or itself followed by a

step to the other pole, or itself, a step to the other pole and a step back, etc.

But if the path had a bump at the place the substitution was performed, this

bump would disappear when a step is added from one pole to the other. In
formulas,

t2
tu I—> tu T / -f t3u + t^ u2 T • • • — tu T

1 — tu

Finally we must add at the beginning of the path a sequence of steps from

one pole to the other. Therefore we obtain

{( t x /tu + t2/(l — tu) t2 \ïF(M,0 even 1 + - )fz[ 2 \ •IV 1 — tu J \ t 12/(I — tu) 1 — tu J

As another example, consider the group Z generated by the non-free set

{±1, ±2}. Geometrically, it can be seen as the set of points (2/, 0) and

(2i + 1J a/3) for all i G Z, with edges between all points at Euclidean distance

2 apart; but we will not make use of this description. The circuit series of
Z with This enlarged generating set will be an algebraic function of degree 4

over the rationals.

Define first the following series :

f(t) counts the walks from 0 to 0 in N ;

g(t) counts the walks from 0 to 1 in N ;

h(t) counts the walks from 1 to 1 in N

Denote the generators of Z by 1 =/, 2 — 1 =| and —2 =.LL. The series

then satisfy the following equations, where the generators' symbol is written
instead of T' to make the formulas self-explanatory:

/- 1 + (Î/ j + T £ U + IT g IF]] h ü)/,
9 =f Î/+/ ÎÎ
h =f+f I g + g il g,
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giving a solution / that is algebraic of degree 4 over Z(t).

Then define the following series :

G counts the walks from 0 to 0 in Z ;

e counts the walks from 0 to 1 in Z

They satisfy the equations

1 + 2(î/ I G+ rr g I G+17 11 e+ TT Ü e+ î Ü G+TT hU G,

e GU + GT\f + GV\ g

giving the solution

_
4 + 3t — 6f2 — 10f(l + 2t)6 + 2f2(3 + 8Q62 - 6f4(l +

G ~ UU7^36r2

where 6 is a root of the equation

1 - (21+ 1)5 + f(2 + 3f)<52 - r2(l + 2 + t4ô4 0

8. COGROWTH OF NON-FREE PRESENTATIONS

We perform here a computation extending the results of Section 3.1. The

general setting, expressed in the language of group theory, is the following:
let n be a group generated by a finite set S and let E < II be any subgroup.
We consider the following generating series :

F(t)= '|7|>

7cn<n

Git)y, rH '

words w in 5
defining an element in r.

where |y| is the minimal length of 7 in the generators S, and |iü| is the usual

length of the word w. Is there some relation between these series In case H
is quasi-free on S, the relation between F and G is given by Corollary 2.6.
We consider two other examples: IT quasi-free but on a set smaller than S,
and n PSL2(Z).
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