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§3. Main theorems

THEOREM 1. Let G be a locally compact commutative group, G its dual

group, the Haar measures on G, G being determined as in §2.

(i) If 1 < P < 2, then the contraction operator Tp given by (3) is surjective

if and only if G is a finite group.

(ii) T\ Ll{G) —» Co(G) is surjective if and only if G is a finite group; here

Ff=l
Proof (i) It is known that Tp is always injective; cf. [HR] vol.2, (31.31),

p. 231. If Tp is surjective, then Tp will be an isomorphism between LP(G)
and LP(G); since p' p if 1 <p< 2, this implies, according to the

Lp-isomorphism theorem of §2, that LP{G) and hence Lp\G) are finite
dimensional i.e. G (and hence G) are finite groups. On the other hand,

if G is a finite commutative group then it is a well-known elementary fact

(see [HR] vol.1, p. 357) that G is isomorphic to G so that, for any p,q
in [l,oo], LP(G) and Lq(G) are then of the same finite dimension equal to
the order of the group G ; hence, in particular, if G is a finite commutative

group, LP(G) is isomorphic to LP (G) for 1 < p < 2 ; the isomorphism can
be realized via Tp since Tp is injective and dim LP{G) dim LP (G).

(ii) The proof here is perfectly similar; it uses the impossibility of an

isomorphism between Ll(p) and Co(Y) given in §2.

This completes the proof of Theorem 1.

The notations p', etc. are as in §2 for the following theorem as well;
its proof uses the non-surjectivity given by Theorem 1 and an elementary
inversion formula.

THEOREM 2. Let G be an infinite commutative locally compact group
and 2 < p < oo. Then no inequality of the form

(5) I! /||„,<M||/||,

can hold for f G D, D being a LP{G) -dense linear subspace of LP(G)DL1(G),
whatever be the choice of M, 0 < M < oo.

Proof. We shall need the following simple facts:

(i) If 0 < a < c < b < oo then, for any positive measure /i,

L»niV)cicW.
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This is evident from the following:

[ \f\cd(i « f \f\cdp + f l/T^/i

< [ \f\adp + f \f\bdß.
J\f |<i

(ii) (Inversion formula for L2(G)). If / G L2(G) then

T.W2/) =/
where rg(x) g(-x), g: G —> C being any function; cf. [HR] (31.17), p. 225.

(iii) If (/? E Lfl(G) nL*(G), a, b being in [1,2], then

Taip — ci.e.

This fact has already been explicitly mentioned in the introduction where an

exact reference is given.

If (5) were to hold for f £ D, there would be a bounded linear operator T,

T : Z/(G) ^Z/(G)
such that

Tf=f, f GD C L"(.G)n L\G).
Since 1 < p'<2,the Hausdorff-Young inequality gives a linear contraction S,

S: Lp' (G)—> LP(

such that S(p tTp> <p.

Now, if f £ D,fisin L2(G) (since 1 < 2 < p ; cf. (i) above) as well as

in Ll(G) (by hypothesis) so that

Tf =f eL2(G)nLp'(G).

Thus, for f <E D,

S(Tf) S{T2f) t Tp'{T2=f
by using the facts (ii) and (iii) given above. Since D is dense in LP{G) and
the operator ST is continuous we deduce that

STf fe

which obviously implies that Smust be surjective; this contradicts Theorem 1

thus establishing the impossibility of (5) for
This completes the proof of Theorem 2.
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Remark. We observe that conversely, Theorem 1 can be deduced from
Theorem 2 ; we shall not elaborate on this ; however, our proof of Theorem 1

shows that its validity stems from a simple general result on Lp -spaces.

§4. Historical remarks

The inequality (1) was given first by Hausdorff [H] in 1923 for the groups
G T (with G Z) and G — Z (with G T). Hausdorff was inspired
by the work of W. H. Young from 1912-13 who proved that the Fourier
series of a function in Z/, 1 <P< 2, had coefficients which were in £p

(and, in a suitable sense, vice-versa) for p' 2k, a positive even integer,

p 2k/(2k — 1). Young did not formulate his results in terms of inequalities
which were given first by Hausdorff (for all p G [1,2] and for the groups
G T, G Z, i.e. for Fourier series). Hausdorff's proof, which is all
but forgotten today, used Young's results for p' 2k and some of Young's
techniques to carry out an interpolation argument for all the values of p, p',
1 < P < 2, missing in Young's work. Hausdorff's paper [H] gives the exact

references to W. H. Young's paper which were related to his work.

Shortly afterwards, after having heard of Hausdorff's inequalities, F. Riesz

obtained independently (in [RF]) some Hausdorff-Young type inequalities, valid
for series expansions in terms of arbitrary bounded orthogonal functions. This

paper of F. Riesz was important not only because it showed that Hausdorff-

Young type inequalities did not belong exclusively to the theory of Fourier
series but also because F. Riesz (in collaboration with his colleague A. Haar)

conjectured there the validity of a general "arithmetical" inequality for linear
forms (in a finite number of variables) which they claimed to be enough for
proving F. Riesz's theorem for orthogonal expansions.

It was this conjecture which seems to have led M. Riesz (F. Riesz's younger
brother) to formulate and prove in 1927 ([RM]) his convexity theorem for
bilinear forms and use it to deduce Hausdorff-Young-F. Riesz inequalities
and many others. M. Riesz's work was exactly what A. Weil used in 1940 to
establish (1) for general locally compact commutative groups in his book [W],

p. 117. As is well-known, once the Plancherel theorem for a general L2(G), G

locally compact commutative, is established (and this was done by Weil) the

proof of (1) via M. Riesz's theorem is almost immediate. M. Riesz's work was

simplified and much generalized by Thorin in 1938 (and later in 1948; exact

references can be found in [DS] or in [HR]) which launched the later theory
of interpolation of operators due to many well-known mathematicians which
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