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374 M. OJANGUREN AND I. PANIN
6. THE RESIDUE

In this section we construct a residue map
Res: W/(Alr, ') — W(A)

satisfying R; and R, of §5.
The definition of Res will be preceded by a few preliminaries.

LEMMA 6.1. Let Py be a (finitely generated) projective A-module and
define M(a) by the exact sequence

0 — Polf] = Pglt]l — M(a) — 0,

where o is A[t]-linear. Suppose that its localization oy: Pylt,t™'] — Polt,t™ ]
is an isomorphism. Then, as an A-module, M(c) is finitely generated and
projective.

Proof. Decompose Pqt,t=!'] as a direct sum Po[t] @ t~'Po[t~!] of
A-modules. Let m be the projection onto the first summand. Then 3 =
p:g 1s an A-linear splitting of «. Hence M(c) is A-projective. It
is also finitely generated as an Afr]-module, hence, being annihilated by a
power of t, it is finitely generated as an A-module. []

—1
T O Oy

Let M = M(a) be as in the previous lemma. Assume that o is
e-symmetric. We define a pairing

M x M — Alt,t~'1/Alf]

by (a,b) = aloy '(b)), where a and b are representatives in P[¢] of
abeM.

LEMMA 6.2. If « is e-hermitian, then (,) is a perfect €-hermitian pairing.

Proof. Since «, is e-hermitian, denoting by x — x° the involution on A
we have
(@,b) = ale; ' (b)) = e(b(a, ' (@)))° = e(b,a@) .
This proves the first assertion.
We now check that the adjoint of (,)

x: M — Homuq(M, Alt,t™'1/Al]),

defined as x(@)(b) = (a,b), is an isomorphism. We first prove injectivity.
Suppose that, for some a and every x in M, x(a)(x) = 0. This means
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that a(a, L) € A[r] for every x € Pjlf]. We only have to show that
o, 1(a) ¢ Py[t]. Consider the diagram

Polf] ———  Homgu (P51, Alt])

l l

Polr, 1] —"— Homu(P3l1]. Alt. 1)

where the horizontal arrows are the canonical ones. Since Py[t] is projective
(and finitely generated!) over A[f], they both are isomorphisms. Therefore an
element b € Py[t.+~'] is in Py[f] if and only if, for any x € Pjlt], x(b)
is in A[f]. This is indeed the case for b = a;, Ya) because x(a, l(a)) =
e(ala, Lo)))° € Al by the very assumption on a. Thus injectivity is proved.
We now check that x is surjective. Let f: M — Alt,t71]/A[t] be an A[t]-linear
map. Since Py[t]* is projective, there exits an f which makes the right hand
square of the diagram

0 — Po[f] —2— Polf]* —2— M 0

| _
| f
L lf l
0 —— A[f] —— Alt.t7] —L— Aln.t /Al —— 0

commute, p and g being the canonical surjections. Clearly gofoa = 0, hence
there exists an A[f]-linear map a: Pp[t] — A[f] such foa =1ioa, i being
the inclusion A[t] — A[r.t~!]. We claim that x(a) = f. For this it suffices
to show that for any b € Py[t]* we have a(a, 1(b)) = f(b) modulo A[r]. We
denote by a, the localization of a at t and by f,: Polt,t~']* — A[z,t~!] the
unique A[f, 7 !]-linear extension of f. Observing that a; '(a) = q, o o ! we
get the following relations:

a(a; (b)) = (a; 0 o )(b) = f(b) = f(D).

This proves that x is surjective. [

Let now (Po[t.t~'].a) be an e-hermitian space. For any natural integer n
for which "o (Py[t]) C Po[f]* we define M(ca.n) by the exact sequence

0 — Po[f] = P31l — M(a.n) — 0
and equip it with the e-hermitian structure defined above:

(@.b) = a((P )~ (b)) .
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LEMMA 6.3. Let : (Po[t,t7 '], @) — (Qolt,t~'1,3) be an isometry and
assume that (Polt]) C Qolt], a(Polz]) C Polt]* and B(Qolt]) C Qolt]*. Then
M(o) and M(B) are Witt equivalent t-torsion spaces.

Proof. Consider the diagram

0
[
0 K
q
0 —— Polfl —*— Polt]* —=— M(e) —— 0
P p* [
qp

By Lemma 6.1 the module L, viewed as an A-module, is finitely generated
and projective. The map 1* is obtained from the map ¢ by dualizing over
A[t]. We denote the cokernel of ¥* by K and we denote the canonical map
Po[t]* — K by §. One may observe that K is isomorphic to LF (see §4 for
the notation) but we will not use this observation.

The A[f]-linear map 6 = g, o ¥*: Qplt]* — M(a) induces a map
0: M(B) — 0(Qolt]*)/0(B3(Qol])). The statement will be deduced from the
following claims.

(1) The map 6 is an A[¢]-linear isomorphism.

(2) The map g induces an A[t]-linear isomorphism

p: M(2)/0(Qol1]") — K.

(3) 8(B(Qp[t]) is a sublagrangian of M(c).
4) (B(BQol) = 6(Qole]*).

(5) The map 6 is an isometry of ¢-torsion spaces.

In fact, by (4), (5) and Theorem 4.5, M((3) is Witt equivalent to M(c).
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We now prove the claims. The surjectivity of # is clear. To show injectivity,
suppose that x € ker(#). Choose a lift x € Qo[f]* of x. There exist a y € Qplz]
and a z € Pg[f] such that ¥*(8(y) —x) = a(z). Replacing « by ¢*ofFo1) we
get Y*(X) = Y*(B(y —1(z))). Since * is injective, this shows that x € Im(f3)
and hence x = 0.

To prove (2) observe that, since oa =go* ooy =0, g induces a
surjective map p: M(a)/0(Qolt]*) — K. Injectivity is also clear.

To prove (3) we first observe that 6(G(Qyp[r])) is a direct factor (as an
A-module) of M(a). In fact, by (2), 6(Qpl[f]*) is a direct factor (as an
A-module) of M(«) and, by (1), 8(8(Qolt])) is a direct factor of 6(Qp[t]™).
For any two elements a,b € Po[t]* let us denote by (a,b), the element
a(a; 1(b)), and similarly for (a,b) 5+ We then have

(a,b) 5 = (¥*(@), p*B)),

because v, is an isometry. Let now @,b € 8(3(Qolt])) and x,y € Qq[f] such
that a = ¢*(8(x)) and b = *(6(y)) are preimages of a and ». We have to
check that (@, b) = 0. This is the same as saying that (a,b)_ is in A[r].
This is indeed the case because

(@,b) = (V7 (B, v (BON),, = (B, B0)) 5 = BOG) € Al1].

We now prove (4). For any a € 0(5(Qo[t])) and any b € M(c) we choose
preimages a and b of the form a = ¢*(B(x)) and b = Y (y) with x € Qp[r]
and y € Qo[t,t~'1*. Then we have

(a,b), = (Y7 (B, U (), = (B, ¥) 5 = € yx)°,

which shows that, for any y € Qolr,7'1*, (¥*(8(Qolt])),b), is in A[r] if
and only if y € Qq[f]*, which is equivalent to b € 0(Qo[t]*).

We now prove (5). We already know that 6 is an A[f]-linear isomorphism.
A computation like the one above proves that it is an isometry. [

COROLLARY 6.4. Let (Pylt,t™'],a) be an e-hermitian space. Let n be
such that t*"a(Py[f]) C Polt]*. Then the class of M(c,n) in Wiors(Al]) does
not depend on the choice of n.

COROLLARY 6.5. Let (Po[t,t7 '], @) and (Polt,t= 1, B) be isometric spaces
and assume that for some natural integers m and n, " a(Po[t]) C Polt]* and

" B(Py[1]) C Polt]*. Then M(c,m) and M(B,n) are Witt equivalent t-torsion
spaces.

g o
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Proof. Let : (Polt,t7'1,2"a) — (Polt,t~']1,#"5) be an isometry
and let k be a natural integer such that *y(Py[f]) C Polf]*. Then
tfah: (Polt, 171, "a) — (Polt,t~ 11, 12"t%3) is an isometry and, by Lemma
6.3, M(a,m) and M(3,n + k) are Witt equivalent. Hence, by Corollary 6.4,
M(o,m) and M((B,n) are Witt equivalent as well. [

PROPOSITION 6.6. Associating to any space (Po[t,t™'], ) the torsion
space M(a,n) (for a suitable n) yields a homomorphism

res: WALt 7']) = Wiors(AL1]) .

Proof. By Corollary 6.5, associating to the isometry class of a space
(Polt, 171, o) the Witt class of the f-torsion space M(a, n) for some suitable
n is a well defined map. It is obvious that the orthogonal sum of two spaces is
mapped to the corresponding sum of z-torsion spaces, hence this map induces
a homomorphism w: Ky — W, (A[f]), where Kp is the Grothendieck group
of e-hermitian spaces of the form (Py[t,t7'], @). It is clear from the definition
of M(c,n) that a standard hyperbolic space H(Qolt,t~1]) is mapped to zero,
hence w induces a homomorphism res: W/(A[t,t7']) — Wion(Al]). L]

If we compose res with OV W,os(Alt]) — W(A) we get a homomorphism
Res = 8" ores: W(A[t,t71]) — W(A)

which we call residue.

THEOREM 6.7. The residue
Res: W/(A[t,t7 1) — W(A)

satisfies the following two properties:
Ry : For any constant space & € W(A) C W(A[t,t~']), Res(¢) = 0.
Ry : For any constant space £ € W(A), Res(t- &) = €.

Proof. The two properties immediately follow from the construction of

res. L]

An amusing application of the existence of Res is the following result.
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PROPOSITION 6.8. Let A be a commutative semilocal ring in which 2 is
invertible. Let (P, ) be a quadratic space over A. If (P, o) is isometric to
(P,t- ) over Alt, t~ 1], then (P, ) is hyperbolic.

Proof. Let ¢ be the class of (P, ) in W(A). In W'(A[£]) we have £ = t-£.
Applying Res to both sides we obtain £ = 0. Since A is semilocal, by Witt’s
cancelletion theorem we conclude that (P,«) is hyperbolic. [

7. THE WITT GROUP OF LAURENT POLYNOMIALS
Let W/(A[t,t~']) be the group defined in the introduction.

THEOREM 7.1. Let A be an associative ring with involution in which 2
is invertible. Let

©: WAl t7']) — WAL ']
be the canonical homomorphism.
(a) If H*(Z/2,K_1(A)) = 0, then ¢ is surjective.
(b) If Ko(A) = Ko(Alt]) = Ko(Alt, t~1), then ¢ is an isomorphism.

Proof of (a). Corollary 2.4 implies that
H*(Z/2, Ko(Alt,17'])/Ko(A)) = 0.

This means that every projective A[t,z~!]-module P is in the same class as
some projective module of the form

Polt,t "1 Q@ 0,

where Py is a projective A-module. Therefore, adding to a space (P,a) a
hyperbolic space H(Q') with Q ® Q' free, we may assume that P is of the

form Py[t,t~']. This means precisely that the class of (P, ) is in the image
of W(Als,r™'). O

Proof of (b). Surjectivity is obvious, because by assumption every
projective A[t,t!]-module is stably extended from A. Suppose that the class
of a space (Po[t,#~ '], @) vanishes in W(A[¢t,z7!]). This means that, for some
Q and R, there exists an isometry

(Polt,t '], ) L H(Q) ~ H(R).

Adding to both sides a suitable H(A[f,r~']") we may replace Q and R by

extended modules Qot,#7'] and Ro[z,#']. Then the isometry means precisely
that the class of (Pgy[t,#7'], ) vanishes in W/(A[r,t~']). [

[P S N



	6. The residue

