6. The residue Objekttyp: Chapter Zeitschrift: L'Enseignement Mathématique Band (Jahr): 46 (2000) Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am: **25.05.2024** #### Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. #### Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch ### 6. The residue In this section we construct a residue map *Res*: $$W'(A[t, t^{-1}]) \to W(A)$$ satisfying R_1 and R_2 of §5. The definition of Res will be preceded by a few preliminaries. LEMMA 6.1. Let P_0 be a (finitely generated) projective A-module and define $M(\alpha)$ by the exact sequence $$0 \longrightarrow P_0[t] \stackrel{\alpha}{\longrightarrow} P_0^*[t] \longrightarrow M(\alpha) \longrightarrow 0,$$ where α is A[t]-linear. Suppose that its localization $\alpha_t \colon P_0[t, t^{-1}] \to P_0[t, t^{-1}]$ is an isomorphism. Then, as an A-module, $M(\alpha)$ is finitely generated and projective. *Proof.* Decompose $P_0[t,t^{-1}]$ as a direct sum $P_0[t] \oplus t^{-1}P_0[t^{-1}]$ of A-modules. Let π be the projection onto the first summand. Then $\beta = \pi \circ \alpha_t^{-1}|_{P_0^*[t]}$ is an A-linear splitting of α . Hence $M(\alpha)$ is A-projective. It is also finitely generated as an A[t]-module, hence, being annihilated by a power of t, it is finitely generated as an A-module. \square Let $M=M(\alpha)$ be as in the previous lemma. Assume that α is ϵ -symmetric. We define a pairing $$M \times M \rightarrow A[t, t^{-1}]/A[t]$$ by $\langle \overline{a}, \overline{b} \rangle = a(\alpha_t^{-1}(b))$, where a and b are representatives in $P_0^*[t]$ of $\overline{a}, \overline{b} \in M$. LEMMA 6.2. If α is ϵ -hermitian, then \langle , \rangle is a perfect ϵ -hermitian pairing. *Proof.* Since α_t is ϵ -hermitian, denoting by $x \mapsto x^{\circ}$ the involution on A we have $$\langle \overline{a}, \overline{b} \rangle = a(\alpha_t^{-1}(b)) = \epsilon(b(\alpha_t^{-1}(a)))^{\circ} = \epsilon \langle \overline{b}, \overline{a} \rangle^{\circ}.$$ This proves the first assertion. We now check that the adjoint of \langle , \rangle $$\chi: M \to \operatorname{Hom}_{A[t]}(M, A[t, t^{-1}]/A[t]),$$ defined as $\chi(\overline{a})(\overline{b}) = \langle \overline{a}, \overline{b} \rangle$, is an isomorphism. We first prove injectivity. Suppose that, for some a and every x in M, $\chi(\overline{a})(\overline{x}) = 0$. This means that $a(\alpha_t^{-1}(x)) \in A[t]$ for every $x \in P_0^*[t]$. We only have to show that $\alpha_t^{-1}(a) \in P_0[t]$. Consider the diagram $$P_{0}[t] \xrightarrow{\sim} \operatorname{Hom}_{A[t]}(P_{0}^{*}[t], A[t])$$ $$\downarrow \qquad \qquad \downarrow$$ $$P_{0}[t, t^{-1}] \xrightarrow{\sim} \operatorname{Hom}_{A[t]}(P_{0}^{*}[t], A[t, t^{-1}])$$ where the horizontal arrows are the canonical ones. Since $P_0[t]$ is projective (and finitely generated!) over A[t], they both are isomorphisms. Therefore an element $b \in P_0[t,t^{-1}]$ is in $P_0[t]$ if and only if, for any $x \in P_0^*[t]$, x(b) is in A[t]. This is indeed the case for $b = \alpha_t^{-1}(a)$ because $x(\alpha_t^{-1}(a)) = \epsilon(a(\alpha_t^{-1}(x)))^\circ \in A[t]$ by the very assumption on a. Thus injectivity is proved. We now check that χ is surjective. Let $\overline{f}: M \to A[t,t^{-1}]/A[t]$ be an A[t]-linear map. Since $P_0[t]^*$ is projective, there exits an f which makes the right hand square of the diagram $$0 \longrightarrow P_0[t] \xrightarrow{\alpha} P_0[t]^* \xrightarrow{p} M \longrightarrow 0$$ $$\downarrow a \qquad \qquad \downarrow f \qquad \qquad \downarrow \bar{f}$$ $$0 \longrightarrow A[t] \longrightarrow A[t, t^{-1}] \xrightarrow{q} A[t, t^{-1}]/A[t] \longrightarrow 0$$ commute, p and q being the canonical surjections. Clearly $q \circ f \circ \alpha = 0$, hence there exists an A[t]-linear map $a \colon P_0[t] \to A[t]$ such $f \circ \alpha = i \circ a$, i being the inclusion $A[t] \to A[t,t^{-1}]$. We claim that $\chi(a) = \overline{f}$. For this it suffices to show that for any $b \in P_0[t]^*$ we have $a(\alpha_t^{-1}(b)) \equiv f(b)$ modulo A[t]. We denote by a_t the localization of a at t and by $f_t \colon P_0[t,t^{-1}]^* \to A[t,t^{-1}]$ the unique $A[t,t^{-1}]$ -linear extension of f. Observing that $\alpha_t^{-1}(a) = a_t \circ \alpha_t^{-1}$ we get the following relations: $$a(\alpha_t^{-1}(b)) = (a_t \circ \alpha_t^{-1})(b) = f_t(b) = f(b)$$. This proves that χ is surjective. Let now $(P_0[t, t^{-1}], \alpha)$ be an ϵ -hermitian space. For any natural integer n for which $t^{2n}\alpha(P_0[t]) \subseteq P_0[t]^*$ we define $M(\alpha, n)$ by the exact sequence $$0 \longrightarrow P_0[t] \xrightarrow{t^{2n}\alpha} P_0^*[t] \longrightarrow M(\alpha, n) \longrightarrow 0$$ and equip it with the ϵ -hermitian structure defined above: $$\langle \overline{a}, \overline{b} \rangle = a((t^{2n}\alpha_t)^{-1}(b)).$$ LEMMA 6.3. Let $\psi: (P_0[t, t^{-1}], \alpha) \to (Q_0[t, t^{-1}], \beta)$ be an isometry and assume that $\psi(P_0[t]) \subseteq Q_0[t]$, $\alpha(P_0[t]) \subseteq P_0[t]^*$ and $\beta(Q_0[t]) \subseteq Q_0[t]^*$. Then $M(\alpha)$ and $M(\beta)$ are Witt equivalent t-torsion spaces. Proof. Consider the diagram By Lemma 6.1 the module L, viewed as an A-module, is finitely generated and projective. The map ψ^* is obtained from the map ψ by dualizing over A[t]. We denote the cokernel of ψ^* by K and we denote the canonical map $P_0[t]^* \to K$ by \hat{q} . One may observe that K is isomorphic to L^{\sharp} (see §4 for the notation) but we will not use this observation. The A[t]-linear map $\theta = q_{\alpha} \circ \psi^* \colon Q_0[t]^* \to M(\alpha)$ induces a map $\overline{\theta} \colon M(\beta) \to \theta(Q_0[t]^*)/\theta(\beta(Q_0[t]))$. The statement will be deduced from the following claims. - (1) The map $\overline{\theta}$ is an A[t]-linear isomorphism. - (2) The map \hat{q} induces an A[t]-linear isomorphism $$\rho: M(\alpha)/\theta(Q_0[t]^*) \to K$$. - (3) $\theta(\beta(Q_0[t]))$ is a sublagrangian of $M(\alpha)$. - (4) $(\theta(\beta(Q_0[t]))^{\perp} = \theta(Q_0[t]^*).$ - (5) The map $\overline{\theta}$ is an isometry of *t*-torsion spaces. In fact, by (4), (5) and Theorem 4.5, $M(\beta)$ is Witt equivalent to $M(\alpha)$. We now prove the claims. The surjectivity of $\overline{\theta}$ is clear. To show injectivity, suppose that $x \in \ker(\theta)$. Choose a lift $\widetilde{x} \in Q_0[t]^*$ of x. There exist a $y \in Q_0[t]$ and a $z \in P_0[t]$ such that $\psi^*(\beta(y) - \widetilde{x}) = \alpha(z)$. Replacing α by $\psi^* \circ \beta \circ \psi$ we get $\psi^*(\widetilde{x}) = \psi^*(\beta(y - \psi(z)))$. Since ψ^* is injective, this shows that $\widetilde{x} \in \operatorname{Im}(\beta)$ and hence x = 0. To prove (2) observe that, since $\hat{q} \circ \alpha = \hat{q} \circ \psi^* \circ \beta \circ \psi = 0$, \hat{q} induces a surjective map $\rho: M(\alpha)/\theta(Q_0[t]^*) \to K$. Injectivity is also clear. To prove (3) we first observe that $\theta(\beta(Q_0[t]))$ is a direct factor (as an A-module) of $M(\alpha)$. In fact, by (2), $\theta(Q_0[t]^*)$ is a direct factor (as an A-module) of $M(\alpha)$ and, by (1), $\theta(\beta(Q_0[t]))$ is a direct factor of $\theta(Q_0[t]^*)$. For any two elements $a, b \in P_0[t]^*$ let us denote by $\langle a, b \rangle_{\alpha}$ the element $a(\alpha_t^{-1}(b))$, and similarly for $\langle a, b \rangle_{\beta}$. We then have $$\langle a, b \rangle_{\beta} = \langle \psi^*(a), \psi^*(b) \rangle_{\alpha}$$ because ψ_t is an isometry. Let now $\overline{a}, \overline{b} \in \theta(\beta(Q_0[t]))$ and $x, y \in Q_0[t]$ such that $a = \psi^*(\beta(x))$ and $b = \psi^*(\beta(y))$ are preimages of a and b. We have to check that $\langle \overline{a}, \overline{b} \rangle = 0$. This is the same as saying that $\langle a, b \rangle_{\alpha}$ is in A[t]. This is indeed the case because $$\langle a,b\rangle_{\alpha} = \langle \psi^*(\beta(x)), \psi^*(\beta(y))\rangle_{\alpha} = \langle \beta(x), \beta(y)\rangle_{\beta} = \beta(x)(y) \in A[t].$$ We now prove (4). For any $\overline{a} \in \theta(\beta(Q_0[t]))$ and any $\overline{b} \in M(\alpha)$ we choose preimages a and b of the form $a = \psi^*(\beta(x))$ and $b = \psi_t^*(y)$ with $x \in Q_0[t]$ and $y \in Q_0[t, t^{-1}]^*$. Then we have $$\langle a, b \rangle_{\alpha} = \langle \psi^*(\beta(x)), \psi_t^*(y) \rangle_{\alpha} = \langle \beta(x), y \rangle_{\beta} = \epsilon \cdot y(x)^{\circ},$$ which shows that, for any $y \in Q_0[t, t^{-1}]^*$, $\langle \psi^*(\beta(Q_0[t])), b \rangle_{\alpha}$ is in A[t] if and only if $y \in Q_0[t]^*$, which is equivalent to $\overline{b} \in \theta(Q_0[t]^*)$. We now prove (5). We already know that $\overline{\theta}$ is an A[t]-linear isomorphism. A computation like the one above proves that it is an isometry. COROLLARY 6.4. Let $(P_0[t,t^{-1}],\alpha)$ be an ϵ -hermitian space. Let n be such that $t^{2n}\alpha(P_0[t]) \subseteq P_0[t]^*$. Then the class of $M(\alpha,n)$ in $W_{tors}(A[t])$ does not depend on the choice of n. COROLLARY 6.5. Let $(P_0[t, t^{-1}], \alpha)$ and $(P_0[t, t^{-1}], \beta)$ be isometric spaces and assume that for some natural integers m and n, $t^{2m}\alpha(P_0[t]) \subseteq P_0[t]^*$ and $t^{2n}\beta(P_0[t]) \subseteq P_0[t]^*$. Then $M(\alpha, m)$ and $M(\beta, n)$ are Witt equivalent t-torsion spaces. *Proof.* Let $\psi: (P_0[t,t^{-1}],t^{2m}\alpha) \to (P_0[t,t^{-1}],t^{2n}\beta)$ be an isometry and let k be a natural integer such that $t^k\psi(P_0[t])\subseteq P_0[t]^*$. Then $t^k\psi: (P_0[t,t^{-1}],t^{2m}\alpha) \to (P_0[t,t^{-1}],t^{2n+2k}\beta)$ is an isometry and, by Lemma 6.3, $M(\alpha,m)$ and $M(\beta,n+k)$ are Witt equivalent. Hence, by Corollary 6.4, $M(\alpha,m)$ and $M(\beta,n)$ are Witt equivalent as well. \square PROPOSITION 6.6. Associating to any space $(P_0[t, t^{-1}], \alpha)$ the torsion space $M(\alpha, n)$ (for a suitable n) yields a homomorphism res: $$W'(A[t, t^{-1}]) \rightarrow W_{tors}(A[t])$$. *Proof.* By Corollary 6.5, associating to the isometry class of a space $(P_0[t, t^{-1}], \alpha)$ the Witt class of the t-torsion space $M(\alpha, n)$ for some suitable n is a well defined map. It is obvious that the orthogonal sum of two spaces is mapped to the corresponding sum of t-torsion spaces, hence this map induces a homomorphism $\omega \colon K_H \to W_{tors}(A[t])$, where K_H is the Grothendieck group of ϵ -hermitian spaces of the form $(P_0[t, t^{-1}], \alpha)$. It is clear from the definition of $M(\alpha, n)$ that a standard hyperbolic space $H(Q_0[t, t^{-1}])$ is mapped to zero, hence ω induces a homomorphism $res \colon W'(A[t, t^{-1}]) \to W_{tors}(A[t])$. If we compose res with $\partial^W : W_{tors}(A[t]) \to W(A)$ we get a homomorphism $$Res = \partial^W \circ res \colon W'(A[t, t^{-1}]) \to W(A)$$ which we call residue. THEOREM 6.7. The residue Res: $$W'(A[t, t^{-1}]) \rightarrow W(A)$$ satisfies the following two properties: R_1 : For any constant space $\xi \in W(A) \subset W(A[t, t^{-1}])$, $Res(\xi) = 0$. R_2 : For any constant space $\xi \in W(A)$, $Res(t \cdot \xi) = \xi$. *Proof.* The two properties immediately follow from the construction of res. An amusing application of the existence of Res is the following result. PROPOSITION 6.8. Let A be a commutative semilocal ring in which 2 is invertible. Let (P, α) be a quadratic space over A. If (P, α) is isometric to $(P, t \cdot \alpha)$ over $A[t, t^{-1}]$, then (P, α) is hyperbolic. *Proof.* Let ξ be the class of (P, α) in W(A). In W'(A[t]) we have $\xi = t \cdot \xi$. Applying *Res* to both sides we obtain $\xi = 0$. Since A is semilocal, by Witt's cancelletion theorem we conclude that (P, α) is hyperbolic. \square ## 7. THE WITT GROUP OF LAURENT POLYNOMIALS Let $W'(A[t, t^{-1}])$ be the group defined in the introduction. THEOREM 7.1. Let A be an associative ring with involution in which 2 is invertible. Let $$\varphi \colon W'(A[t, t^{-1}]) \to W(A[t, t^{-1}])$$ be the canonical homomorphism. - (a) If $H^2(\mathbb{Z}/2, K_{-1}(A)) = 0$, then φ is surjective. - (b) If $K_0(A) = K_0(A[t]) = K_0(A[t, t^{-1}])$, then φ is an isomorphism. Proof of (a). Corollary 2.4 implies that $$H^2(\mathbf{Z}/2, K_0(A[t, t^{-1}])/K_0(A)) = 0.$$ This means that every projective $A[t, t^{-1}]$ -module P is in the same class as some projective module of the form $$P_0[t,t^{-1}]\oplus Q\oplus Q^*$$, where P_0 is a projective A-module. Therefore, adding to a space (P, α) a hyperbolic space H(Q') with $Q \oplus Q'$ free, we may assume that P is of the form $P_0[t, t^{-1}]$. This means precisely that the class of (P, α) is in the image of $W'(A[t, t^{-1}])$. \square *Proof of* (b). Surjectivity is obvious, because by assumption every projective $A[t, t^{-1}]$ -module is stably extended from A. Suppose that the class of a space $(P_0[t, t^{-1}], \alpha)$ vanishes in $W(A[t, t^{-1}])$. This means that, for some Q and R, there exists an isometry $$(P_0[t,t^{-1}],\alpha)\perp H(Q)\simeq H(R)$$. Adding to both sides a suitable $H(A[t, t^{-1}]^n)$ we may replace Q and R by extended modules $Q_0[t, t^{-1}]$ and $R_0[t, t^{-1}]$. Then the isometry means precisely that the class of $(P_0[t, t^{-1}], \alpha)$ vanishes in $W'(A[t, t^{-1}])$.