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Let H' be a hyperplane close to H and transverse to Sd ; assume, further,

I that H' contains no vertices. It is enough to show that H' cannot intersect
j Sd in more than d — 1 points. On the one hand, Hf cannot intersect all the

j edges of Sd. Or else, H! would separate all pairs of consecutive vertices, and

this would contradict the choice of W. On the other hand, if the number of
; intersections of H' and Sd were greater than d — 1, it would be equal to

d + 1. Indeed, for topological reasons, the parity of this intersection number

is that of d — 1. We obtain a contradiction, which proves the claim.

Finally, by Lemma 3.3, the intersection multiplicity of H with Sd is not

less than d — 1.

A curious property of a simplex is that each of its d-tuples of vertices is

a flattening.

LEMMA 3.10. The simplex Sd has d + 1 flattenings.

Proof. The determinant (3.1) involves all d A- 1 vectors Vi,..., Vd+\ • If
d is odd then, according to (3.3), Vd+i V\, and we are reduced to the fact
that a cyclic permutation of vectors changes the sign of the determinant. On

the other hand, if d is even then Vd+2 — Vj, which also leads to a change

of sign in (3.1).

3.3 Barner's theorem for polygons

Now we formulate the result which serves as the main technical tool in
the proof of Theorems 2.2, 2.6 and 2.10. Recall that we consider generic
polygons in RP^ with at least d + 1 vertices.

THEOREM 3.11. A strictly convex polygon in RPJ has at least d + 1

flattenings.

Proof. Induction on the number n of vertices.

Induction starts with n d+1. Up to projective transformations, the unique
strictly convex (c/+l)-gon is the simplex Sd. Indeed, every generic (d+l)-tuple
of points in RP^ can be taken into any other one by a projective transformation,

j Therefore, all generic broken lines with d edges are projectively equivalent.
It remains for us to connect the last point with the first one, and there are
exactly two ways of doing this. One yields a contractible polygon, and the
other a non-contractible one. One of these polygons is Sd, while the other one
cannot be strictly convex, since its intersection number with a hyperplane does
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not have the same parity as d — 1. The base for induction is then provided
by Lemma 3.10.

Let P be a strictly convex (n + l)-gon with vertices Vi,...,V„+1.
Delete Vn+\ and connect Vn with V\ in such a way that the new edge
(Vn, Vi), together with the two deleted ones, (Vn, Vn+i) and (Vn+i, Vi), form
a contractible triangle. Denote the new polygon by P'.

Let us show that P' is strictly convex. P is strictly convex, therefore
through every d — 1 vertices of P' there passes a hyperplane H intersecting
P with multiplicity d — 1. We want to show that the intersection multiplicity
of H with P' is also d — 1. Let H' be a hyperplane close to H and transverse
to P and P'. The intersection number of H' with P' does not exceed that
with P. Indeed, if Hf intersects the new edge, then it intersects one of the
deleted ones since the triangle is contractible.

By the induction hypothesis, P' has at least d + 1 flattenings. To prove
the theorem, it remains for us to show that P' cannot have more flattenings
than P.

Consider the sequence of determinants (3.1) A2,..., K+\ • On replacing
P by P' we remove d + 1 consecutive determinants

(3.4) An—d+l-) Aft—d+2-> • • • Aft+1

and replace them with d new determinants

with i — 1 The transition from (3.4) to (3.5) is done in two steps.
Firstly, we add (3.5) to (3.4) so that the two sequences alternate, that is, we
put A- between Ay and Ay+i. And secondly, we delete the "old" determinants
(3.4). We will prove that the first step preserves, the number of sign changes,
while the second step obviously cannot increase this number.

Lemma 3.12. If An_d+i and An_d+i+i have the same sign, then A'n_d+i
is also of the same sign.

Proof of the lemma. Since P is in general position, the removed
vector Vft+i is a linear combination of d + 1 vectors Vn-d+i,... ,Vn,
Vft+2, • • • Vn+i+\ •

(3.5)

where

(3.6) Aft—d-\-i |Fft_j_|_; Vft_|_i Vft_|_/_|_i

(3.7) Vft+l — aVn-d+i + bVn+i+i + * * * i
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where the dots indicate a linear combination of the remaining vectors. It
follows from (3.6) that

(3.8) An-d-^4 — (— iy & ^n-d-\-ii An—d+i+l — (— 1) n—d+i'

It is time to use the strict convexity of P. Let LI be a hyperplane in RP^

through d— 1 vertices V/2_j+;+i,..., Vn+1,..., Vn+i which intersects P with

multiplicity d- 1, and let H be its lifting to R^+1. Choose a linear function

ip in Rrf+1 vanishing on H and such that p(Vn+1) > 0. We claim that

(3.9) (-1 f-'pWn-d+i) > 0 and (-1 )^ltp(yn) > 0.

Indeed, by Lemma 3.3, the intersection multiplicities of H with the polygonal
lines {Vn-d+h • • •, Vn+i) and (Vn+u..., Vn+i+i) are at least d — i and i - 1,

respectively. Since H intersects P with multiplicity d — 1, the above two

multiplicities are indeed equal to d — i and i— 1. The inequalities (3.9) now

readily follow from Lemma 3.5.

Finally, we evaluate tp on (3.7):

P(Vn+1) a PWn-d+i) + b p{Vn+i+l) •

It follows from (3.9) and the inequality p(Vn+\) > 0 that at least one of the

numbers (—1 )l~lb and (—1 )d~la is positive. In view of (3.8), Lemma 3.12

follows.

Thus Theorem 3.11 is also proved.

Remark 3.13. Strict convexity is necessary for the existence of d + 1

flattenings. One can easily construct a closed polygon without any flattenings
and even C°-approximate an arbitrary closed smooth curve by such polygons.
In the smooth case such an approximation is well known: given a curve 70,
the approximating one, 7, spirals around in a tubular neighbourhood of 70.
In the polygonal case we take a sufficiently fine straightening of 7.

4. Applications of the main theorem

4.1 Proof of Theorems 2.2, 2.6 and 2.10

Now we prove the results announced in Section 2. The idea is the same in
all three cases and is precisely that of Barner's proof of the smooth versions
of these theorems - see [3] and also [15]. We will consider Theorem 2.6 in
detail, indicating the necessary changes in the other two cases.
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