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computation (based on Proposition 2.4) for the sphere S*" shows that one has
gn = (=1""'(n — 1)!, as claimed. [

3. THE ~-CONE AND THE c-CONE

In general, the problem of computing the geometric dimension of vector
. bundles is very complicated, as is any general lifting problem in homotopy
. theory. So, the same is true for the positive cone. That is why we now
| introduce what we call the y-cone and the c-cone. They are supposed to be
easier to compute and might be good approximations to the positive cone. As
. we will see, these two cones coincide for torsion-free spaces.

DEFINITION 3.1.
i) The ~y-cone of X is defined by

K,X):={(n,x) e ZOKX) | ¥*(x) =0 for all k>n}.

The ~-dimension of a class x € E(X), denoted by ~-dim(x), is the least
integer n such that ~v*(x) = 0 for all k > n, in other words, it 1s the degree
(in the variable t) of the polynomial ~;(x).

ii) The c-cone of X is defined by
K.(X) = {(n,x) €ZOKX) | cx(x) =0 for all k>n}.

| The c-dimension of a class x € K (X), denoted by c-dim(x), is the least integer
n such that cx(x) =0 for all k > n, in other words, it is the degree (in the
variable ) of the polynomial c,().

: Let us point out that the “lower boundary” of the positive cone K, (X), as
{ a subset of I?(X) @ Z, coincides with the graph of the geometric dimension
function g-dim: K(X) — Z (the positive elements consisting exactly of the
boundary and the points located above it). The analogous statements hold

for the y-cone and the c-cone with respect to the corresponding dimension
function.

The following results on these objects follow readily from our preliminaries
on K -theory.
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PROPOSITION 3.2. Let X be a connected finite CW-complex. Then
i) g-dim(x) < dim(X)/2, for any x € K(X);
i) ~y-dim(x) < g-dim(x), for any x € K(X);
i) Ki(X) C Ky (X);
iv) c-dim(x) < g-dim(x), for any x € K(X);
v) K1 (X) C K(X).

This proposition shows that the -cone and the c-cone are approximations
of the positive cone, more precisely, that they constitute upper bounds of the
latter.

It turns out that the «y-cone and the c-cone coincide for torsion-free spaces,
i.e. those spaces having no torsion in their integral cohomology.

PROPOSITION 3.3. Let X be a connected finite CW-complex. If X is
torsion-free, then

K,X) = K.(X).

Proof. The result follows immediately from Proposition 2.2 and injectivity
of the Chern character for a torsion-free space. [

It is worth mentioning that there is no general comparison statement for the
~-cone and the c-cone, i.e. there are spaces with torsion for which the y-cone
is not contained in the c-cone, and spaces with torsion for which the c-cone
is not contained in the y-cone. Moreover, there exist spaces for which the
~-cone and the c-cone strictly contain the positive cone (the product S x 8%
is such an example as we will later see). We now illustrate the situation by
three examples. |

EXAMPLES.

i) Let j: BSU(3) — BU(3) be the map induced by the inclusion of the
special unitary group SU(3) in U(3). Then the composition map

BSU(3) —— BU@3) — 2 BU

lifts to a map f: BSU(3) — BSU. Consider W the homotopy fibre of f. It



THE POSITIVE CONE OF SPHERES 141

enters in a pull-back diagram

SU

| |

W ——— PBSU

| l

BSU(3) ——— BSU

|

where SU ~ QBSU «— PBSU — BSU is the path-loop fibration of BSU. The
Leray-Serre spectral sequence in cohomology for this fibration is well-known
and maps via f* to the corresponding spectral sequence for the fibration 7.
By Lemma 2.5, one has

5@ =j" 075 (c3(p3)) = ¢3(3) = 23 -
Similarly, one has f*(¢2) = c2(73), which is easily seen to vanish. For the
cohomology of W in degree < 6, letting a4 := 7*(¢2) and bs := 77(c3), we
have computed that x5 = 0 and
HSSW:Z) =7 182 302 as®L xsDL bs =7 DZL/2,
——
=~7/2
where deg(xyj1) = 2j+1. The inclusion i: ¥ := Wl < W of the 7-skeleton
of W induces an isomorphism in cohomology up to degree 6. If we let
x = i* o* 0j*(p3) € K(Y), we find c3(x) = bg # 0, whereas v*(x) = 0,
for all &k > 3. Indeed, this is clear for k > 4 since then q/k(,?)},) = 0, and
¥ (x) = 0 because its classifying map is the composition f o 7 o i, which is
homotopically trivial. Thus c-dim(x) = 3 and ~y-dim(x) < 2. Consequently, Y
is a connected finite CW-complex with a strict inclusion

K.(Y) & Ky(Y).
ii) Consider the Moore space M = M(Z/2,5), i.e. the mapping cone

of a continuous map f:S° —— §5 of degree two, or more explicitly,
M=Cr= S° U, €. The exact sequences in cohomology and in K -theory of

the cofibration S5 < M —» M /8% ~ S5 give epimorphisms
g*: 7= HS® Z) - H(M; Z) = 7.)2
g L =K% - KM)~=Z/)2.
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Let x and a be suitable generators of K(S°) and of H®(S®; Z) respectively,
and define X := ¢*(x) and a := ¢g*(a). For obvious dimensional reasons, the
Chern classes c¢(X) and cy(X) vanish. Moreover, one has c¢3(X) = g*(c3(x)) =
q*(2a) = 0 (see Proposition 2.4), hence c-dim(x) = 0. On the other hand,
we have ') = ¥ # 0, so ~-dim(x) > 1; more precisely, v*(X) is
g (=S(3,2) - x) = ¢*(-3x) =% # 0 and () = ¢*(25(3, 3) - x) = 0, so
~v-dim(x) = 2. Consequently, M is a connected finite CW-complex with a
strict inclusion
K,M) G K.(M).

iii) Let Z = Y VM be the wedge of the preceding two examples. It is
a 7-dimensional finite connected CW-complex for which none of K.,(Z) and
K.(Z) contains the other one. (The product Y x M would also do.)

To end the present section, we prove that the cones are semigroups and
homotopy invariants.

PROPOSITION 3.5. The positive cone, the ~y-cone and the c-cone of a
connected finite CW-complex X are sub-semigroups of K(X) and homotopy
invariants of X. Moreover, the positive cone is a sub-\-semiring of K(X).

Proof. The homotopy invariance is obvious for the three cones. We have
already mentioned in the preliminaries that the positive cone is a sub-semiring
of K(X). It is also clear that it is a sub-A-semiring. The “exponentiality” of
v, and of ¢ (the total Chern class) immediately show that the y-cone and the
c-cone are sub-semigroups of K(X). [

We do not know if in general the y-cone and the c-cone are sub-A-semirings
of K(X).

4. THE POSITIVE CONE OF THE SPHERES

We now intend to compute the positive cone of the spheres. For odd-
dimensional spheres, there is nothing to do since K($?"+!) = 0. Whereas for
even-dimensional spheres, one has K(S*) =1Z-x = Z, so we only have to
compute g-dim(lx) for all integers [.

By Proposition 2.4, we have

clx)=cx) =0+ D" n-D-a)f =1+ Hn-1)"a,
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