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9. THE POSITIVE CONE OF SOME PRODUCTS OF EVEN-DIMENSIONAL SPHERES

In this section, using known results from the theory of homotopy groups
of spheres, we compute the positive cone of $* x §*, §* x $¢, §° x §° and
S® x S®. This computation will in particular show that the positive cone and
the v-cone do not coincide for S* x S*. Keeping notations as in Section 7,
we describe the positive cone in terms of the geometric dimension function.

A) We start with the case of S* x $%.

| THEOREM 9.1. The geomftric dimension on K(S*xS%) is given as follows :
- for x = ax; + bxy + Ix;x; € K(S* x §%), one has

| (0 ifa=b=1=0

2 ifa#0, b=1=0

2 if b£0, l=ab/6, | even

3 ifb#£0, l=ab/6, | odd

4 if l # ab/6

Proof. Theorem 8.2 reduces the problem to the computation of the
~ function s = s(ab), i.e. to calculating g-dim(x) for the particular stable classes
~ x = ax; + bxy + (ab/6)x1x, (where ab is a multiple of 6), or equivalently
the order of [xi, x;] in both groups 77(BU(3)) and 7w7(BU(2)) (with a little
abuse of notation, we denote both Whitehead products by the same symbol).
By Samelson [Sam], one has

m(BU(2)) = 16(U(2)) = m6(SU(2)) = 76(S°) = Z/12,

precisely generated by [x;, xp]. This shows that for these particular values
of x, g-dim(x) = 2 if and only if ab is a multiple of 12. This completes the
proof. [

g-dim(x) = <

\

REMARK 9.2.
1) Borel and Hirzebruch in [BoHi] (p.355), applying Bott’s results of
[Bottl], have proved that
Tont1(BU(n)) = mn(SUn)) = Z/n! (n > 2),
hence m7(BU(3)) = Z/6. Moreover, Corollary 8.3 shows that the order of
[x1, x2] in m7(BU(3)) is 6; it is consequently a generator.

ii) As already alluded to, we have just proved that $* x §* has its positive
cone strictly contained in its y-cone, although it is a torsion-free space.
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B) As for §* x §*, classical results from the theory of homotopy groups
of the unitary groups allow one to compute the positive cone of $* x S¢. In
this case, it coincides with the ~y-cone.

THEOREM 9.3. For the product S* % S°, one has
K4 (8* x 8% = K.(S* x 8% = K (8" x §%).
The latter is described in Theorem 7.1.

Proof. By Lundell’s tables [Lun] (see also [Mim]) and by Remark 1)
above, one has

mo(BUB3)) =2 Z/12 and mo(BU(4)) = Z./24 .

Corollary 8.3 shows that [x, x,] is of order 12 in 7o(BU(4)). By naturality
of the Whitehead product, the homomorphism j, = mo(j), induced by
the map j: BU@B) — BU(4), takes the product [xi, x;] € mo(BU(3)) to
[x1, x2] € m9(BU(4)). This implies that [xi, x,] is of order 12 in mo(BU(3))
too, and that [ax;, bx;] vanishes in mo(BU(3)) precisely when it is zero in
mo(BU(4)). Together with Theorem 8.2, this completes the proof. L]

REMARK 9.4. This proof shows in particular that [x, x,] is a generator
of m9(BU(3)) = Z/12 and that the map j,: mo(BU(3)) — mo(BU(4)) is
injective.

C) By similar methods, we now show that the positive cone and the
y-cone coincide for S® x $® and then for S° x S8.

THEOREM 9.5. For the product S® x S°, one has
K4 (S° x $% = K.(S° x 8% = K.,($° x §°).
The latter is given by Theorem 7.1 .

Proof. By Lundell’s tables [Lun] (see also [Mim]), one has
1 (BUB)) 2 Z/30 and m;(BU(5)) 2 Z/120.

Corollary 8.3 shows that [x1, x,] is of order 30 in 7;(BU(5)). By naturality,
the map j, = m1(j), induced by j: BU(3) — BU(5), takes the Whitehead
product [x1, xo] € 71(BU(3)) to [x1, x;] € m1(BU(S)). This implies that
[x1, x2] 1s of order 30 i m;(BU(3)) too, and that [ax;, bx,] vanishes
in m;(BU(3)) precisely when it is zero in m(BU(5)). Together with
Theorem 8.2, this completes the proof. []
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REMARK 9.6.
i) This shows that [x;, x,] generates m1(BU(3)) = Z./30 and that the map
j«: m1(BU3)) — 71 (BU(S)) 18 injective.

ii) We were also able to prove this theorem without appealing to results
on homotopy groups of BU(n). Using spectral sequence arguments, we have
computed the first few stages of the Moore-Postnikov tower of the map
BSU(3) — BSU(5). This computation, being extremely lengthy, is not given
here (see [Matt]).

Now we move on to the product S® x 8.

THEOREM 9.7. For the product S® x S, one has
Ko (S° x 8%) = K.(S® x %) = K, (S® x 5%).
The latter is described in Theorem 7.1.
Proof. By Lundell’s tables [Lun] (see also [Mim]), one has
T3(BU@) = Z/60 and m3(BU(6)) =2 Z/720.

Corollary 8.3 shows that [x;, x,] is of order 60 in m3(BU(6)). By naturality,
the map j, = m3(j), induced by j: BU(4) — BU(6), takes the Whitehead
product [xi, x;] € m3(BU4)) to [x1, x2] € m3(BU(6)). This implies that
[x1, xo] is of order 60 in m;3(BU(4)) too, and that [ax;, bxy] vanishes
in m3(BU(4)) precisely when it is zero in m3(BU(6)). Together with
Theorem 8.2, this completes the proof. []

REMARK 9.8. The proof shows that [x;, x;] is a generator of the group
m13(BU4)) = Z/60 and that the map j.: m3(BU4)) — m3(BU(6)) is
injective.

10. “GAPS IN COHOMOLOGY” AND THE 7y-CONE

In the present section, we are interested in spaces having a “gap in
cohomology”, more precisely we look at spaces obtained by attaching a
single large-dimensional cell to a finite CW-complex Y. For such spaces,
the integral cohomology is zero between the dimension of Y and the top-
dimensional class. The products S" x §™ are typical examples (see Section 8).
For this kind of spaces, the c-cone obviously cannot give information in the
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