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and a cohomology class v in H2(M;L/2) such that v cannot be represented

as the second Stiefel-Whitney class of a real vector bundle on M (it is

now known that m > 11 can be replaced by m > 6, which is sharp [27]).
On the other hand, for any compact nonsingular real algebraic set X, each

cohomology class in H2(X;L/2), whose Poincaré dual homology class can
be represented by an algebraic subset of X, is the second Stiefel-Whitney
class of some algebraic vector bundle on X. Therefore the conjecture has to
be false.

We call the latter part of the argument the Grothendieck formula in real

algebraic geometry. This was proved in [7] in two steps. First a proof of
the Grothendieck formula relating vector bundles and algebraic cycles on
schemes over R was sketched (an analog of the formula from earlier papers
[18, 19] for varieties over an algebraically closed field); this sketch contains

some flaws. Then a connection, established in [15], between the Chern classes

with values in the Chow ring and the Stiefel-Whitney classes yielded the

conclusion. The appearance of [17] allowed for a shorter proof [12], based

on the same principles and free from the flaws mentioned above. According
to the authors' experience such proofs still present considerable difficulty for

many topologically inclined mathematicians. The goal of this paper is to give a

self-contained topological proof that uses only the simplest facts from algebra.
Several applications of the Grothendieck formula in real algebraic geometry,
besides the one discussed above, are contained in [12, 13, 22].

The paper assumes knowledge of singular homology and cohomology with
coefficients in Z/2 at the level of [26]. Real vector bundles and their Stiefel-

Whitney classes, for which a good reference is [24], are also used. All smooth

(of class C°°) manifolds are assumed to be paracompact and without boundary.

From real algebraic geometry we require only a few notions, recalled here

and elucidated in detail in just a few pages of [5], [8], or [11]. Basic and

generally well-known facts from commutative algebra that are needed can all
be found in [23].

1. The Grothendieck formula

Real algebraic varieties

The Zariski topology on Rn is the topology for which the closed sets

are precisely the algebraic subsets of Rn. Let V be a nonempty Zariski

locally closed subset of Rn (that is, V is the difference of two algebraic
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subsets of R"). The dimension dim y of V is the largest integer d for

which there exist an open subset N of Rn (in the usual metric topology) and

polynomials Pi,... ^Pn-d in RIXii..., Tn] such that NCI V is a nonempty

set, y C Z, N nv N nz, where

z {zR" I Pi (z) • • • 0}

r ôP' 1

and the Jacobian matrix J, I < i < n - d, 1 < j < n, has rank n-d
for every point z in Any (several other characterizations of dim V are given

in [8, Sect. 3.4 and 11, Sect. 2.8]). A point x in V is said to be nonsingular if
one can find N and Pu ,Pn-d as above, with x in NHV and d dim V ;

otherwise x is called singular (this agrees with [5, 11], whereas in [8] a

slightly different definition is used, with the condition d dimV omitted).

Clearly, the set of all nonsingular points of y is a smooth submanifold of Rn

of dimension dim V. Consider V endowed with the Zariski topology induced

from Rn. The set Sing(y) of all singular points of y is Zariski closed in y
and

dimSing(y) < dim y

[5, p. 28 or 8, p. 137 or 11, p. 69]. If Sing(y) is empty, y is said to be

nonsingular.

Recall that V is irreducible if it cannot be represented as the union of two
Zariski closed subsets of y, distinct from V. Assuming that y is irreducible,

one has dimW < dim y for every Zariski closed subset W of V, W ^ V [5,

p. 28 or 8, p. 136 or 11, p. 50]. If V is not irreducible, then V V\U.. .UVk,
where yj..... y^ are irreducible Zariski closed subsets of V, with V-, not
contained in Vj for i ^ j ; the sets V\ r 14 are uniquely determined and

called the irreducible components of y [5, p. 20 or 8, p. 119 or 11, p. 50].

A function /: V —> R is said to be regular if for every point x in y,
there exist an open neighborhood (in the Zariski topology) Ux of x in V
and two polynomials P and Q in R[Pi,...,Pw] such that Q(y) / 0 and

f(y) — P(y)/Q(y) for all y in Ux. In fact, one can take Ux V, and hence /
is always a quotient of two polynomials f P/Q with Q(y) ^ 0 for all y in
y [5, p. 19 or 8, p. 121 or 11, p. 62]. The set 7Z(V) of all regular functions
on y forms a ring under pointwise addition and multiplication.

Throughout this paper, a real algebraic variety is, by definition, a Zariski
locally closed subset of Rn, for some n. A map <p: V -A W between real
algebraic varieties, If C R^, is called regular if each component tpi of
(£> ((/?!,..., cpp) is in K(V). If, moreover, tp is bijective and (p-1 is regular,
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we call <p biregular. One easily sees that nonsingular points and dimension
are invariant under biregular maps [5, p. 28, or 8, p. 126 or 11, p. 67].

Unless explicitly stated otherwise, all topological notions related to real

algebraic varieties will refer to the usual metric topology.

Combinatorial properties of real algebraic varieties

Recall that the semialgebraic subsets of Rn form the smallest family of
subsets containing all sets of the form

{x G Rn I P(x) > 0}, where P is in R[Ti,..Tn]
and closed under taking finite unions, finite intersections, and complements.
Obviously, any algebraic subset of Rn is semialgebraic.

We shall make use of the following important result (for its proof cf. [8,
Theorem 2.6.12] or [11, Theorem 9.2.1]):

THEOREM 1.1. Let T be a compact semialgebraic set. Given a finite family
T of semialgebraic subsets of T, there exists a semialgebraic triangulation
of T compatible with T.

In other words, there exist a simplicial complex K and a homeomorphism
O: |jRT| -A T, where \K\ is the polyhedron determined by K, such that for
each open simplex a of K and each set S 'irr <F, the image <D(cr) is a

semialgebraic subset of T, which is either contained in or disjoint from S.

For any pair (X,A) of topological spaces, the Euler-Poincaré characteristic

X(X,A) is defined by

X(X,A) ^(-l/dim z/iHr(XZ/2),
r>0

provided that dimZ/27/r(X, A; Z/2) is finite for all r > 0 and ec[uals 0 for all

r large enough (if the homology group H*(Z,A; Z) is finitely generated, then

this defintion coincides with the usual one [16, Proposition VI.7.21]). If %(X)
and x(A) are defined, then xC^^) is also defined and y(I)-x(4)
[16, Proposition V.5.7]. If K is a finite simplicial complex and tr is the

number of r-simplices in K, then

X(|Z|) ^(-l)r£r.
r>0

Note that for any compact real algebraic variety V, the Euler-Poincaré
characteristic x {x}) is defined for every point x of V. Indeed,
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by Theorem 1.1, there exists a triangulation O: | jRT| —> V of V such that

O(v) x for some vertex v of K. If L is the subcomplex of K of all

simplices that do not have v as a vertex, then \L\ is a deformation retract of

1*1 \ {v}, and hence

X(V, Vn {x}) - xd^l, |A-|s{»}) |L|) x(l^l) - •

It follows that

(1.2) X(V,y\{x}) ^(-l)rmr,
r>0

where mr is the number of r-simplices of K having v as a vertex.

THEOREM 1.3. Let V be a compact real algebraic variety. Then for every

point x in V, the Euler-Poincaré characteristic x(V, V\{x}) is an odd integer.

Reference for the proof. It is proved in [8, Theorem 3.10.4], by a nice

topological argument, that

Jl dimz/2 Hr(V, x {x}; Z/2)
r>0

is an odd integer. This is equivalent to Theorem 1.3.

COROLLARY 1.4. Let V be a compact d-dimensional real algebraic variety
and let O: jX| —V be a triangulation of V. Then for any (d — l)-simplex
a of K, the number n(a) of d-simplices of K having a as a face is even.

Proof. Let t\ rn^a) be the d -simplices of K having a as a face. Let
K' be the barycentric subdivision of K and let b be the barycenter of o.
Denote by nt the number of simplices s of the barycentric subdivision of rt
such that b is a vertex of s and s is not in the barycentric subdivision of cr.

One readily sees that ni is odd. Let n be the number of simplices in the

barycentric subdivision of cr having b as a vertex. Clearly, n is odd. Note
that n + n\ + • • • + nn^ is the number of simplices of Kf having b as a

vertex. In view of (1.2) and Theorem 1.3, n(o) has to be even. Hence the

proof is complete.

Algebraic cycles

Given a compact d-dimensional real algebraic variety V, we shall now
define a homology class [V] in Hd(V, Z/2) playing a special role in various
problems concerning geometry and topology of varieties.
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Choose a semialgebraic triangulation of V (Theorem 1.1). By Corollary 1.4,

the sum of all d-simplices of this triangulation is a cycle with coefficients
in Z/2. The homology class [V] in Hd(V, Z/2) represented by this cycle
is independent of the choice of the triangulation. Indeed, taking any two
semialgebraic triangulations of V we can, using Theorem 1.1, find a third

one, which is a common subdivision of the two. The uniqueness of [V] follows
immediately.

The excision property implies that for each nonsingular point x of V, the

image of [V] by the canonical homomorphism

Hd(V; Z/2) —> Hd(V, V\{x};Z/2) ^ Z/2

is nonzero. The class [V] is called the fundamental class of V. If V is

nonsingular, then [V] coincides with the fundamental class of V regarded
as a manifold. For other, equivalent, definitions of the fundamental class,

cf. [10, 14, 15].

Let X be a compact real algebraic variety. For any J-dimensional Zariski
closed subset V of X, we call the element [V]x /*([V]) of Hd(X; Z/2),
where i: V c—> X is the inclusion map, the homology class of X represented

by V. Denote by

H^(X; Z/2)

the subgroup of Hd(X; Z/2) generated by all homology classes of X
represented by J-dimensional Zariski closed subsets of X. Given two J-dimensional
Zariski closed subsets V\ and V2 of X, we have [Vi]x-\-[V2]x [W]x, where

W is the union of the irreducible d-dimensional components of V\ U V2 not
contained in V\ D V2. It follows that every element of Hfg(X;Z/2) is of the

form [V]x for some d-dimensional Zariski closed subset V of X.

Assuming that X is compact and nonsingular, we set

tfaclg(X; Z/2) DfZ/2)),
where c + d dimX and Dx : HC(X; Z/2) —> Hd(X; Z/2) is the Poincaré

duality isomorphism, Dx(u) uD[X] for every u in HC(X; Z/2). The groups
Hfë(X; Z/2) and (X; Z/2) are important invariants of compact nonsingular
real algebraic varieties. The reader can refer to [14] for a short survey of their

properties and applications, and for a more extensive list of references. These

groups have the expected functorial properties, which however will neither be

proved nor used here.
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The Grothendieck formula

In order to state the Grothendieck formula, we have to recall the definition

of an algebraic vector bundle.

An algebraic vector bundle on a real algebraic variety X is a triple

£ (£,7t,X), where E is a real algebraic variety, tt: E X is a regular

map, and the following conditions are satisfied:

(i) for every point x in X, the fiber Ex is a real vector space,

(ii) there exist a finite cover {£/a}aga ^ by Zariski open sets,

and for each À in A, a nonnegative integer k and a biregular map

(f \ Tc~l(U\) -A U\ X such that ip(Ex) {.x} x and the restriction

Ex -A {x} x R^ of <p is a linear isomorphism for every x in U\,
(iii) £ is an algebraic subbundle of the trivial vector bundle X x W, for

some p.
Condition (iii) means that there exists a regular map i: E -A X x R^ such

that i(Ex) Ç {x} x W and the restriction Ex —> {x} x Rp of i is an injective
linear map for every i in I.

Basic properties of algebraic vector bundles can be found in [11, Chapter

12]. The reader should keep in mind that algebraic vector bundles considered

here are sometimes called strongly algebraic vector bundles in the literature

[9, 10, 13].

Our main goal is to give a self-contained proof of the following
Grothendieck formula.

THEOREM 1.5. Let X be a compact nonsingular real algebraic variety.
For every cohomolögy class v in (X;Z/2), there exists an algebraic vector
bundle £ on X with Wi(£) 0 and w2(0 v.

Here wjc(-) stands for the kth Stiefel-Whitney class.

We end this section by stating two results whose proofs use, in an essential

way, the Grothendieck formula.

Given a compact smooth manifold M, let us denote by Vect(M) the set

of isomorphism classes of topological real vector bundles on M and define

W2(M) {v G #2(M;Z/2) | v w2(Q for some £ in Vect(M)}

One easily sees that W2(M) is a subgroup of H2{M\ Z/2). As mentioned in
the introduction, in general, W2(M) ^ H2(M\ Z/2) for dim M > 6. The group
W2(M) plays a crucial role in the problem of representation of homology
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classes in codimension 2 by Zariski closed subsets. More precisely, we have

the following result.

THEOREM 1.6. Let M be a compact orientable smooth manifold of
dimension at least 5 and let G be a subgroup of H2(M\ Z/2). Then the j

following conditions are equivalent : j

(a) There exist a nonsingular real algebraic variety X and a dijfeomor- j

phism p \ X —ï M such that p*(G) — H2lg{X\7j/l). j

(b) W2(M) G G C W2{M), where W2(M) is the second Stiefel-Whitney j

class of M. j

Proof See [13]. j

Another application concerns the problem of approximation of smooth j

curves (that is, one-dimensional smooth submanifolds) by algebraic curves, j

First recall that a compact smooth submanifold A of a nonsingular real j

algebraic variety X is said to admit an algebraic approximation in X if for |

each neighborhood U of the inclusion map N ^ X (in the C°° topology on j

the set C°°(N,X) of smooth maps from N into X), there exists a smooth j

embedding e : N —> X such that e is in U and e(N) is a nonsingular Zariski
closed subset of A. j

THEOREM 1.7. Let X be a compact nonsingular real algebraic variety \

of dimension 3 and let C be a compact smooth curve in X. Then C admits j

an algebraic approximation in X if and only if the Z/2 -homology class

represented by C is in Hxlg(X; Z/2). j

The proof of Theorem 1.7 will be given elsewhere. Under the extra j

assumption that C is connected and homologous to the union of finitely j

many nonsingular real algebraic curves in X the theorem is proved in [4]. j

2. Proof of the Grothendieck formula

We shall use homology and cohomology groups with coefficients exclusively

in Z/2 and therefore we shall suppress the coefficient group in our
notation.
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