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THEOREM 3.11 ([04]). Let Gp Mdim(M) > be an irreducible

and full homogeneous submanifold of the Euclidean space with rank (M) > 1.

Then M is contained in a sphere.

We summarize all the above facts in the following theorem.

THEOREM 3.12. Let G p M, dim(M) > 2, be an irreducible and full
homogeneous submanifold of the Euclidean space. Then,

: (i) rank(M) > 1 if and only if M is contained in a sphere;

(ii) rank (M) > 2 if and only if M is an orbit of an s-representation.

1 The next corollary uses the fact that the minimal homogeneous submani-

folds of Euclidean spaces must be totally geodesic (see [D]).

\
:1 COROLLARY 3.1. Let G p — M, dim(M) >2, be an irreducible and

fj full homogeneous submanifold of the Euclidean space with parallel mean
: ] curvature vector H. Then H 0 and M is either minimal in a sphere or it

is an orbit of an s-representation.

j 4. Homogeneity and holonomy
i

In this section we briefly relate homogeneity and holonomy. In particular,
we are interested in the computation of the holonomy group in homogeneous
situations. We shall put special emphasis on the tangent bundle of a ho-

| mogeneous Riemannian manifolds and the normal bundle of a homogeneous
submanifold of Euclidean space. But, in the first part, we will work in the

j framework of arbitrary homogeneous (pseudo)metric vector bundles with a con-
j nection. This is because, in our opinion, the main ideas are better understood

j in this context. Another reason is that one can prove, without extra efforts,
j very general results which could have applications to the pseudoriemannian
j case.

j Let E ^ M be a finite dimensional real vector bundle over M with a
j covariant derivative operator V (also called a connection), which corresponds,
j as usual, to a connection in the sense of distributions. More precisely, there
j exists a distribution TL on TE such that

j (1) TL © V TE, where V is the vertical distribution;
j (2) cßc)*CHq) 2tW(g), for a11 c eR, where pc is multiplication by c.
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Let be a C°° metric on the fibres and let g be a Riemannian metric
on M (in fact, and g need not be positive definite). We assume that
there is a Lie group G which acts on E by bundle morphisms, whose induced
action on M is by isometries and is transitive. Moreover, we assume that the
action on E preserves both the metric on the fibres and the connection. A
vector X in the Lie algebra Q of G induces, in a natural way, a Killing
vector field X both on E and M, i.e., if £p G E (resp. p G M) then

X(£p) := X.ÇP:=||,=0exp(tX)£p (resp. X(p) := X.p := ||r=0exp(fZ)
where exp(^Z) is the one parameter subgroup associated with X.

We will always keep in mind, as remarked above, the following two
important cases :

(a) M G/H is a homogeneous Riemannian manifold, where G is a Lie
subgroup of the isometry group /(M), E TM is the tangent bundle and

V is the usual Levi-Civita connection.

(b) M G - v, where v G Rn and G is a Lie subgroup of the isometry

group 7(R"). Here, E u(M) is the normal bundle endowed with the usual

normal connection V"1.

The bundle E is endowed with the so-called Sasaki (Riemannian) metric g.
Namely,

(i) EL is perpendicular to the vertical distribution V, defined by the tangent

space to the fibres Eq —

(ii) The restriction of g to V coincides with the metric on the fibres.

(iii) 7T is a Riemannian submersion.

The Sasaki metric may be regarded as follows. A curve c(t) in E

may be viewed as a section along the curve c(t) iv(c(t)). In this way,
g(c '(0), c '(0)) <£ I 0c(t),I|0c) + 9(c'(0), c'(0)).

Observe that G acts by isometries, with respect to the Sasaki metric, on E.
As is well known, the fibres Eq, q G M, are totally geodesic submanifolds

of E. In fact, if c(t) is a curve in M starting at q, then the parallel transport

rf along c(t) defines an isometry from Eq into Ecq). Let 7^) be a curve
in Eq and consider f(s, t) rtc(^(s)). We have that (rf^C?)), rf^'is))) does

not depend on t and so,

0 inïsf, |/) 29 (Hf, |/) 2HW> mf) 2 |/),dtf

where A denotes the shape operator of Eq as a submanifold of E. Then Eq is

totally geodesic.
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We now describe how the holonomy algebra (i.e., the Lie algebra of the

holonomy group of the connection V of the bundle E A M) is linked with

the group G. As we saw above the fibres Eq of the bundle E are totally

geodesic. Then the projection on Eq of a Killing field X of E, induced
I by some X G Q, gives a Kalling field Bq(X) of the fibre Eq. Observe

I that this projection vanishes at 0^, so Bq(X) belongs to so(Eq), the Lie
j algebra of SO(Eq). The Lie algebra spanned by these Bq(X) is included in

the Lie algebra of the normalizer N(Holq) of the holonomy group Hol^ in

SO(Eq). This is due to the following geometric reason: for any curve c in
I M and g G G, rf'c g.rf.g~l, since G preserves the connection (and

so g. Hol^ .g~l Hol^, where Hoi denotes the holonomy group of the

connection on the bundle E).
Let rf be the flow on E associated to the horizontal component [X]n of

the Killing field X (i.e. if Çp G Ep, then rf(fp) is the parallel transport of
\ along the curve exp(sX) • p from 0 to t). Let Ff be the flow of the Killing

field X on E, i.e., Ff(£p) := exp(tX)£p. Then the fact that isometries and

parallel transport are geometric objects implies that rf o Ef Ff o rf. Taking
into account this identity, one finds that cj)t := rf_toEf defines a one parameter

group of isometries of E with the following properties : (i) ft{Eq) — Eq, (ii)
(j)t\E belongs to N(Holq), the normalizer in SO(Eq) of the holonomy group
Hol^ and (iii) (j)t\Eq where Bq{X) is the claimed projection of the

Killing field X to Eq (i.e. Bq(X)£q [X.^]v, where [ ]v denotes vertical

projection). Note that (iii) is a simple consequence of the general fact that if
two flows Ef, FJ commute then Ef o Ff — Ff+Y.

The following theorem makes precise the above description and establishes,

using the transitivity of G on M, the inclusion of the holonomy algebra into
the Lie algebra generated by the Bq(X).

THEOREM 4.1 ([OSv]). The Lie algebra Cq generated by {Bq(X) : X G Q}
contains the Lie algebra of the holonomy group Hol^ and is contained in the

Lie algebra A(Hol^) of its normalizer in SO(Eq).

Proof In order to illustrate better the main ideas we will only prove a

simplified version of the theorem. The inclusion in the normalizer was observed
j before. Let Lq denote the Lie group associated to Cq and let Çq e Eq. Let us
I consider Sçq := G • Lq • ^ C E. Note that either Sçp H 0 or Sçp SVq,

for all rjPi £,q G E.

It is standard to show that is a subbundle of E over M (of course not
a vector subbundle). Observe that the connected component of the fibre at q
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of Sçq is Lq -^q, since the connected component of the isotropy subgroup Gq

is contained in Lq. So, the restrictions and [X]^ are both tangent to

Sçq and hence the horizontal component [X]j^ is also tangent to Sçq. Since

G acts transitively on M, {[X]^(^) : X G G} coincides with the horizontal

space Ti^q (note that 7r*(X) =X).
Then Hv C TvS^q for all rj e S^q. This implies that Hol* flq C Lq • ^q,

where Hoi* is the connected component of Hol^ (i.e., the restricted holonomy
group). In other words, any orbit of Hoi* is contained in an orbit of Lq.
To get the inclusion Hol* C Lq one has to carry out a similar argument but

replacing E by the principal bundle over M of orthonormal basis of E.

Applications

• E — TM, the tangent bundle: in this case we will show that Bq(X)
(VX)q, where X(p) =X-p, peM (cf. [N]). Indeed,

S|.!|oexp<ö0'7iW

£|ol|„exp('x) • *(s) 1£W V£Î'

where 7^ is the geodesic of M with initial condition £ £ Ep.

If M is locally irreducible and the scalar curvature is not (identically)
zero, then the restricted holonomy group O* of M is non exceptional, i.e. it
acts on TqM as an s-representation (see [Sim, p. 229]). Then O* coincides

with the connected component of its normalizer in SO(TqM). So, the Lie
algebra of <3>* is algebraically generated by {Bq(X) -X £ G}. More generally,

if M is not Ricci flat the same conclusion holds due to [K] and is now a

consequence of next proposition. But Alekseevsky-Kimeflfeld [AK] proved
that a homogeneous Riemannian manifold cannot be Ricci flat, unless it is flat

(a conceptual proof is due to Heintze and appeared in [BB, p. 553]). Then the

holonomy algebra can always be calculated in this way for a locally irreducible

M (the so-called Kostant's method). The following result is essentially due to
Lichnerowicz and it is a consequence of Berger's list [Bl]. Since it is difficult
to find in the literature we include a simple proof.

PROPOSITION 4.1. Let M be a Riemannian manifold which is irreducible

at q G M and let g be the Lie algebra of the local holonomy group O^oc at

q. Let n be the normalizer of g in so(TqM). Then n contains g properly if
and only if M is Kühler and Ricci flat near q.
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Proof. Let us endow so(TqM) with the usual scalar product (A, B) —

-tr(A.B). Assume that n 7^ g. If we decompose orthogonally n g©L then

g and t are ideals of n and so [g,£] t= 0. Now choose 0 Jq G t. Then J2q is

a symmetric endomorphism which commutes with g. So, J2 commutes with

<f)^oc and then each eigenspace of J2 defines a parallel distribution near q.

Since M is locally irreducible at q we conclude, by de Rham's Decomposition

Theorem, that J2q -c2id. We may assume, by rescaling Jq, that J2q - id.

Extending Jq by parallelism we obtain a parallel almost complex structure J

on M. Thus, M is Kähler near q. It is well-known [KN, Proposition 4.5,

p. 149, vol. II] that the Ricci curvature Ric^ of a Kähler manifold M satisfies :

i P- (V TV\ - (Rx'Y>J)
I

Rie m (A, /T) ^
j If 7 is any curve in a small neighbourhood of q joining q to p, and r7 is

I the parallel transport along 7, then

j| (Rx„,Yp,Jp)Ï,0
I since Jq _L g. So, M is Ricci flat near q.

The above two formulas, together with the Ambrose-Singer holonomy
theorem also show the converse.

I • E v(M), the normal bundle of a submanifold of Rn. Recall that
^ in this case the non trivial part of the normal holonomy representation is

an s-representation. Hence, the semisimple part of the normal holonomy
; group coincides with the connected component of its own normalizer (in the

orthogonal group). If M is an irreducible submanifold which is not a curve,
then the group G gives the parallel transport in u0(M) (the maximal parallel
and flat subbundle of z/(M) (see [03]). So, in this case, the Lie algebra of
the normal holonomy group is algebraically generated by {Bq(X) : X G Q}.
Moreover, we have that Bq(X) can be regarded as the projection to the affine

subspace q + vq{M) of the Killing field of Rn (restricted to this normal space)

induced by X G Q. So, the normal holonomy group measures how far G is

from acting polarly and how far M is from being a principal orbit (in which
case this projection would be trivial from the definition of polarity).

Polar actions on the tangent bundle and symmetry

We recall briefly the general notions of polar and hyperpolar actions on
Riemannian manifolds; for more details we refer to [Da, PT2, PT1, HPTT].
Let M be a complete Riemannian manifold and let G be a closed subgroup
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of the full group of isometries of M. A complete embedded and closed

submanifold £ of M is called a section if £ does intersect any orbit of
G in M and is perpendicular to orbits at intersection points. If there exists

a section in M then the action of G is called a polar action. Observe
that from a section we can obtain, by means of the group, sections which
contain any given point. An action is called hyperpolar if it is polar and a

section is in addition flat. Of course in the case of Rn these two concepts
coincide.

Let now M be a complete simply connected Riemannian manifold and let
TM be its tangent bundle endowed with the Sasaki metric. We will regard
M as the (Riemannian) embedded submanifold of TM which consists of the

zero vectors. We have the following characterization of symmetric spaces in
terms of polar (or equivalently, hyperpolar) actions on TM. The following
result was obtained by J. Eschenburg and the third author when writing the

article [EO].

THEOREM 4.2. Let M be a simply connected complete Riemannian

manifold. Then the tangent bundle TM admits a polar action having M
as an orbit if and only if M is symmetric.

Proof. Assume M is irreducible. Let G act polarly on TM and G 0q M.
If £ is a section for this action with q G £ then £ c TqM, since horizontal and

vertical distributions are perpendicular with respect to the Sasaki metric. Since

£ meets G-orbits perpendicularly, we have that the horizontal distribution of
TM is tangent to the G-orbits. Then the parallel transport of any v E TqM
belongs to G v. If the codimension of G • v is greater than 1, then the

holonomy group does not act transitively on the (unit) sphere of TqM.
Hence M is symmetric by the theorem of Berger [Bl, Sim]. If G • v
has codimension 1 then M must be two point homogeneous* and hence

symmetric by [Wa] (for a conceptual proof see [Sz]). If M M\ x • • • x M^
is reducible, by projecting Killing vector fields to the factors we obtain a

bigger group, let us say G G\ x • • • x-Gk and such that G; acts polarly
on Mt.

Let us show the converse. As we noted in Section 2, the transvection group
Tr(A) acts transitively on any holonomy bundle. Then the polarity follows
from the fact the holonomy representation acts polarly.

It follows from the above results that an irreducible homogeneous space

in which holonomy agrees with isotropy must be symmetric.
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