5. Torsion numbers and links

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 48 (2002)

Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: **05.06.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

5. TORSION NUMBERS AND LINKS

A *link* is a finite collection $l = l_1 \cup \cdots \cup l_{\mu}$ of pairwise disjoint knots in the 3-sphere. If a direction is chosen for each component l_i , then the link is *oriented*. Equivalence for links, possibly oriented, is defined just as for knots.

The abelianization of the group $G = \pi_1(S^3 - l)$ is free abelian of rank μ with generators t_1, \ldots, t_{μ} corresponding to oriented loops having linking number one with corresponding components of l. When $\mu > 1$ there are infinitely many possible epimorphisms from G to the integers.

When l is oriented there is a natural choice for χ , sending each generator t_i to $1 \in \mathbf{Z}$. In this way we associate to l an augmented group (G, χ) . As in the special case of a knot, \mathcal{M} has a square presentation matrix, and it is isomorphic to the first homology group of the infinite cyclic cover of $S^3 - l$ corresponding to χ . Again as in the case of a knot, there is a sequence of r-fold cyclic covers M_r of S^3 branched over l. However, $H_1(M_r; \mathbf{Z})$ is isomorphic to $\mathcal{M}/(t^{r-1}+\cdots+t+1)\mathcal{M}$ rather than $\mathcal{M}/(t^r-1)\mathcal{M}$ (see [Sa79]). In the case of a knot the two modules are well known to be isomorphic (see Remark 5.4(i)).

Motivated by these observations we make the following definitions. Let $\widetilde{\mathcal{M}}_r$ denote the quotient module $\mathcal{M}/\nu_r\mathcal{M}$, where $\nu_r = t^{r-1} + \cdots + t + 1$.

DEFINITION 5.1. Let (G,χ) be an augmented group. The r^{th} reduced torsion number \widetilde{b}_r is the order of the torsion submodule $T\widetilde{\mathcal{M}}_r$. The r^{th} reduced Betti number $\widetilde{\beta}_r$ is the rank of $\widetilde{\mathcal{M}}$.

As before, we may also speak of the reduced torsion and Betti numbers of a finitely generated \mathcal{R}_1 -module \mathcal{M} .

Many results of Section 2 apply to reduced torsion and Betti numbers with only slight modification. For example, an argument similar to the proof of Proposition 2.1 shows that $\widetilde{\beta}_r$ is the number of zeros of the Alexander polynomial which are roots of unity and different from 1, each zero counted as many times as it occurs in the elementary divisors Δ_i/Δ_{i+1} ; hence $\widetilde{\beta}_r$ is periodic in r. Also, when $\widetilde{\beta}_r = 0$ the reduced torsion number \widetilde{b}_r is equal to the absolute value of the resultant of Δ and ν_r .

LEMMA 5.2. Assume that $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is an exact sequence of finitely generated abelian groups. If A is finite, then the induced sequence

$$0 \to A \xrightarrow{f} TB \xrightarrow{g} TC \to 0$$

is also exact.

Proof. The only thing to check is surjectivity of g. Since the alternating sum of the ranks of A, B and C is zero and A is finite, the ranks of B and C are equal. By Lemma 2.3 the homomorphism g maps TB onto TC.

PROPOSITION 5.3. Assume that the finitely generated \mathcal{R}_1 -module \mathcal{M} has a square presentation matrix. If $\Delta(1) \neq 0$, then for every r,

(5.1)
$$\widetilde{\beta}_r = \beta_r \,, \qquad \widetilde{b}_r = \frac{b_r}{\delta_r} \,,$$

where δ_r is a divisor of $|\Delta(1)|$. Moreover, $\delta_{r+\gamma} = \delta_r$, for all r, where γ is the cyclotomic order of Δ .

Proof. Consider the sequence

$$\mathcal{M}_1 \xrightarrow{\nu_r} \mathcal{M}_r \xrightarrow{\pi} \widetilde{\mathcal{M}}_r \to 0$$
,

where ν_r is multiplication by $\nu_r = t^{r-1} + \cdots + t + 1$, and π is the natural projection. It is easy to see that the sequence is exact. From it we obtain the short exact sequence

$$0 \to \mathcal{M}_1 / \ker \nu_r \xrightarrow{\nu_r} \mathcal{M}_r \xrightarrow{\pi} \widetilde{\mathcal{M}}_r \to 0$$
.

Here ν_r also denotes the induced quotient homomorphism. Since $\Delta(1) \neq 0$, the module \mathcal{M}_1 is finite and hence $\beta_r = \widetilde{\beta}_r$. The order of \mathcal{M}_1 is $|\Delta(1)|$, and hence the order of $\mathcal{M}_1/\ker\nu_r$ is a divisor δ_r . The second statement of (5.1) follows from Lemmas 5.2 and 3.7.

It remains to show that δ_r has period γ . For this let $0 \neq a \in \mathcal{M}$. The coset $\overline{a} \in \mathcal{M}_1$ is in the kernel of ν_r if and only if there exists $b \in \mathcal{M}$ such that $\nu_r(a-(t-1)b)=0$. Clearly this is true if and only if $\nu_{(\gamma,r)}(a-(t-1)b)=0$, where (γ,r) denotes the gcd of γ and r. Hence the kernel of ν_r is equal to the kernel of $\nu_{(\gamma,r)}$, and the periodicity of δ_r follows. \square

REMARKS 5.4.

- (i) If G is a knot group, then any two meridianal generators are conjugate. Consequently \mathcal{M}_1 is trivial. Proposition 5.3 implies that in this case, the torsion numbers b_r and \widetilde{b}_r are equal for every r.
- (ii) It is well known that for any oriented link $l = l_1 \cup l_2$ of two components, $|\Delta(1)|$ is equal to the absolute value of the linking number $Lk(l_1, l_2)$. (See Theorem 7.3.16 of [Ka96].)

PROPOSITION 5.5. Let \mathcal{M} be a finitely generated \mathcal{R}_1 -module with a square presentation matrix. Assume that $\Delta(t) = (t-1)^q g(t)$, with $g(1) \neq 0$. If p is a prime that does not divide g(1), then

$$\widetilde{\beta}_{p^k} = 0, \quad \widetilde{b}_{p^k}^{(p)} = p^{qk},$$

for every $k \geq 1$.

The proof of Proposition 5.5 requires:

LEMMA 5.6. Let g(t) be a polynomial with integer coefficients, and assume that p is a prime. If p does not divide g(1), then p does not divide $Res(g, t^{p^k} - 1)$ for any positive integer k.

Proof of Lemma 5.6. Assume that p does not divide g(1). Recall that $\Phi_n(t)$ denotes the nth cyclotomic polynomial. From the formula

$$\prod_{\substack{d|n\\d>1}} \Phi_d(1) = \nu_n(1) = n\,,$$

we easily derive

$$\Phi_d(1) = \begin{cases} 0 & \text{if } d = 1\\ q & \text{if } d = q^k > 1, \ q \text{ prime}\\ 1 & \text{other } d. \end{cases}$$

Consequently, Φ_{p^k} does not divide g for any k > 0, and so $\operatorname{Res}(g, t^{p^k} - 1) \neq 0$. The module $\mathcal{H} = \mathcal{R}_1/(g, t^{p^k} - 1)$ has order $\left|\operatorname{Res}(g, t^{p^k} - 1)\right|$, and it suffices to prove that $\mathcal{H} \otimes_{\mathbf{Z}} \mathbf{Z}/p$ is trivial. Now, $\mathcal{H} \otimes_{\mathbf{Z}} \mathbf{Z}/p$ is isomorphic to the quotient of the PID $(\mathbf{Z}/p)[t, t^{-1}]$ by the ideal generated by the greatest common divisor of g and $t^{p^k} - 1$ in this ring. But $t^{p^k} - 1 = (t-1)^{p^k}$ in this ring, and t-1 does not divide g since p does not divide g(1). So the gcd is 1, and $\mathcal{H} \otimes_{\mathbf{Z}} \mathbf{Z}/p$ is trivial. \square

Proof of Proposition 5.5. Let k be any positive integer. Lemma 5.6 implies that $\operatorname{Res}(g, t^{p^k} - 1) \neq 0$. Hence β_{p^k} vanishes, and therefore $\widetilde{\beta}_{p^k}$ is also zero. By a result analogous to Proposition 2.5 and the multiplicative property of resultants

$$\widetilde{b}_{p^k} = \left| \operatorname{Res}(\Delta, \nu_{p^k}) \right| = \left| \operatorname{Res}(t - 1, \nu_{p^k}) \right|^q \left| \operatorname{Res}(g, \nu_{p^k}) \right| = (p^k)^q \left| \operatorname{Res}(g, \nu_{p^k}) \right|.$$

By Lemma 5.6, p does not divide $\left| \operatorname{Res}(g, t^{p^k} - 1) \right|$. Hence p does not divide $\operatorname{Res}(g, \nu_{p^k})$, and so $b_{p^k}^{(p)} = p^{kq}$. \square

COROLLARY 5.7. (i) Let M_r be the r-fold cyclic cover of S^3 branched over a knot. If r is a prime power p^k , then the p-torsion submodule of $H_1(M_r; \mathbf{Z})$ is trivial.

(ii) Let M_r be the r-fold cyclic cover S^3 branched over a 2-component link $l = l_1 \cup l_2$. If r is a power of a prime that does not divide $Lk(l_1, l_2)$, then the p-torsion submodule of $H_1(M_r; \mathbf{Z})$ is trivial.

Proof. Statement (i) was proven in [Go78]. Here it follows from Proposition 5.5 together with the well-known fact that $|\Delta(1)| = 1$, whenever Δ is the Alexander polynomial of a knot. The second statement is a consequence of Proposition 5.5 and Remark 5.4 (ii).

PROPOSITION 5.8. Suppose that \mathcal{M} is a finitely generated \mathcal{R}_1 -module that is isomorphic to $\mathcal{R}_1/(\Delta)$. If $\Delta(t)=(t-1)^q g(t)$, where $g(1)\neq 0$, then for every positive integer r, there exists a positive integer δ'_r such that

$$\widetilde{b}_r = (\delta_r')^q \cdot |T(\mathcal{R}_1/(g,\nu_r))|.$$

Moreover, $\delta'_{r+\gamma} = \delta'_r$, for all r, where γ is the cyclotomic order of Δ .

REMARKS 5.9.

- (i) The order $|T(\mathcal{R}_1/(g,\nu_r))|$ can be found using Proposition 5.3 and Theorem 3.3.
- (ii) When \mathcal{M} is a direct sum of cyclic modules, \widetilde{b}_r can again be found by applying Proposition 5.5 to each summand. When \mathcal{M} is not a direct sum of cyclic modules but is torsion free as an abelian group, a result analogous to Theorem 3.6 can be found by replacing $t^r 1$ everywhere by ν_r in the proof. As in Section 3, the torsion numbers \widetilde{b}_r are then seen to satisfy a linear homogeneous recurrence relation.

Proof of Proposition 5.8. Consider the exact sequence

$$0 \to \ker g \to \mathcal{R}_1/((t-1)^q, \nu_r) \xrightarrow{g} \mathcal{R}_1/((t-1)^q g, \nu_r) \xrightarrow{\pi} \mathcal{R}_1/(g, \nu_r) \to 0,$$

where the first homomorphism is inclusion, the second is multiplication by g, and the third is the natural projection. The order of $\mathcal{R}_1/((t-1)^q, \nu_r)$ is equal to $|\operatorname{Res}((t-1)^q, \nu_r)|$, which is equal to r^q . The kernel of g is generated by ν_r/f_r , where f_r is the greatest common divisor of g and ν_r . Notice that $f_{r+\gamma} = f_r$, for all r. Lemmas 5.2 and 3.7 complete the proof. \square

We conclude with a generalization of Corollary 5.7 (ii).

When (G, χ) is the augmented group corresponding to a 2-component link l, the epimorphism χ factors through $\eta: G \to G_{ab} \cong \mathbb{Z}^2$. For any finite-index subgroup $\Lambda \subset \mathbb{Z}^2$ there is a $|\mathbb{Z}^2/\Lambda|$ -fold cover of S^3 branched over l corresponding to the map $G \to \mathbb{Z}^2 \to \mathbb{Z}^2/\Lambda$. The cover M_r is a special case corresponding to the subgroup Λ generated by $t_1 - t_2$, t_1^r , t_2^r . We denote the rank of $H_1(M_\Lambda; \mathbb{Z})$ by β_Λ and the order $|TH_1(M_\Lambda; \mathbb{Z})|$ by b_Λ .

THEOREM 5.10. Let $l = l_1 \cup l_2$ be a link in S^3 . If p is a prime that does not divide $Lk(l_1, l_2)$, then $\beta_{\Lambda} = 0$ and $b_{\Lambda}^{(p)} = 1$ for any subgroup $\Lambda \subset \mathbf{Z}^2$ of index p^k , $k \geq 1$.

Proof. Let \mathcal{M}_{η} be the kernel of η . We consider the dual $\mathcal{M}_{\eta}^{\wedge}$, which is a compact abelian group with a \mathbf{Z}^2 -action by automorphisms induced by conjugation in G by t_1 and t_2 . The automorphism induced by $\mathbf{n} \in \mathbf{Z}^2$ is denoted by $\sigma_{\mathbf{n}}$; the automorphims induced by (1,0) and (0,1) are abbreviated by σ_1 and σ_2 , respectively. The dual $\mathcal{M}_{\eta}^{\wedge}$ can be identified with a subspace of $\operatorname{Fix}_{\Lambda}(\sigma) = \{\rho \in \mathcal{M}_{\eta}^{\wedge} : \sigma_{\mathbf{n}}\rho = \rho \text{ for all } \mathbf{n} \in \Lambda\}$. Details can be found in [SW00].

From the elementary ideals of \mathcal{M}_{η} a sequence of 2-variable Alexander polynomials $\Delta_i(t_1,t_2)$ is defined; when i=0, setting $t_1=t_2=t$ recovers $\Delta(t)$. By [Cr65], $\Delta_0(t_1,t_2)$ annihilates \mathcal{M}_{η} . Hence $\Delta_0(\sigma_1,\sigma_2)\rho=0$ for all $\rho\in\mathcal{M}_{\eta}^{\wedge}$. Consequently, if $\sigma_{\mathbf{n}}\rho=\rho$ for all $\mathbf{n}\in\mathbf{Z}^2$ then $0=\Delta_0(\sigma_1,\sigma_2)\rho=\Delta_0(1,1)\rho=\Delta(1)\rho$. Recall that $\Delta(1)=\mathrm{Lk}(l_1,l_2)$.

Let

$$Y = \{ \rho \colon \mathcal{M}_{\eta} \to \mathbf{Z}/p : \sigma_{\mathbf{n}}\rho = \rho \text{ for all } \mathbf{n} \in \Lambda \}.$$

We identify \mathbf{Z}/p with the group of p^{th} roots of unity, so that Y is contained in $\mathcal{M}_{\eta}^{\wedge}$. It is a subspace of $\operatorname{Fix}_{\Lambda}(\sigma)$ invariant under the \mathbf{Z}^2 -action, and it contains a subspace isomorphic to $\mathcal{M}_{\eta} \otimes_{\mathbf{Z}} \mathbf{Z}/p$. It suffices to prove that Y is trivial.

Our hypothesis that p does not divide the linking number of l_1 and l_2 implies that $\Delta_0(t_1, t_2)$ is not zero. Consequently, Y is a finite p-group and so its order is a power of p. In view of the second paragraph, the hypothesis also implies that the only point fixed by the \mathbb{Z}^2 -action is trivial. But

$$|Y| = \sum |\mathcal{O}_{\rho}| = \sum |\mathbf{Z}^d/\operatorname{stab}(\rho)|,$$

where the sums are taken over distinct orbits \mathcal{O}_{ρ} and stabilizers $\operatorname{stab}(\rho)$, respectively. Each stabilizer contains Λ , and so $|\mathbf{Z}^d/\operatorname{stab}(\rho)|$ is a divisor of p^k whenever $\rho \neq 0$. Hence |Y| is congruent to 1 mod p. Since |Y| is a power of p, the subspace Y must be trivial. \square