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5. TORSION NUMBERS AND LINKS

A link is a finite collection [ =1y U--- U/, of pairwise disjoint knots in
the 3-sphere. If a direction is chosen for each component /;, then the link is
oriented. Equivalence for links, possibly oriented, is defined just as for knots.

The abelianization of the group G = m(S° — ) is free abelian of rank
p with generators t,...,t, corresponding to oriented loops having linking
number one with corresponding components of I. When p > 1 there are
infinitely many possible epimorphisms from G to the integers.

When [ is oriented there is a natural choice for x, sending each generator
f; to 1 € Z. In this way we associate to [ an augmented group (G,x). As
in the special case of a knot, M has a square presentation matrix, and it is
isomorphic to the first homology group of the infinite cyclic cover of S$° — [
corresponding to x . Again as in the case of a knot, there is a sequence of r-fold
cyclic covers M, of S? branched over [. However, H;(M,;Z) is isomorphic to
M/ 4+ -4 1t4+1)M rather than M /(" —1)M (see [Sa79]). In the case of
a knot the two modules are well known to be isomorphic (see Remark 5.4(1)).

Motivated by these observations we make the following definitions. Let

—~

M, denote the quotient module M /v, M, where v, =1 4+ ... + ¢+ 1.

DEFINITION 5.1. Let. (G,x) be an augmented group. The Jth reduced
torsion number b, 1is jhe order of the: Lo/tsion submodule TM,. The r?
reduced Betti number (3, is the rank of M.

As before, we may also speak of the reduced torsion and Betti numbers
of a finitely generated R;-module M.

Many results of Section 2 apply to reduced torsion and Betti numbers
with only slight modification. For example, an argument similar to the proof
of Proposition 2.1 shows that 3, is the number of zeros of the Alexander
polynomial which are roots of unity and different from 1, each zero counted
as many times as it occurs in the elementary divisors A;/A;;;; hence Er 1S
periodic in r. Also, when (3, = 0 the reduced torsion number Zr 1s equal to
the absolute value of the resultant of A and v,.

LEMMA 5.2. Assume that 0 — A L5 B I C = 0 is an exact sequence
of finitely generated abelian groups. If A is finite, then the induced sequence

0—ALTBI TC =0

is also exact.
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Proof. The only thing to check is surjectivity of g. Since the alternating
sum of the ranks of A,B and C is zero and A is finite, the ranks of B and
C are equal. By Lemma 2.3 the homomorphism g maps 7B onto 7C. []

PROPOSITION 5.3. Assume that the finitely generated Ri-module M has
a square presentation matrix. If A(1) # 0, then for every r,

- ~ b,
(51) /Br::Bra br: <

where 6, is a divisor of |A(1)|. Moreover, 6,1~ = §,, for all r, where vy is
the cyclotomic order of A.

Proof. Consider the sequence
Ml _VV_> Mr _L Mr_> O,

where v, is multiplication by v, = 1 4...4¢t+1, and 7 is the natural
projection. It is easy to see that the sequence is exact. From it we obtain the
short exact sequence

O—>M1/kerur1>/\/lr1>/?/l/r——>0.

Here v, also denotes the induced quotient homomorphism. Since A(1) # O,
the module M is finite and hence [, = Br. The order of M; is |A(1)],
and hence the order of M, /ker v, is a divisor d,. The second statement of
(5.1) follows from Lemmas 5.2 and 3.7.

It remains to show that ¢, has period . For this let 0 = a € M. The coset
a € M; is in the kernel of v, if and only if there exists b € M such that
vi(a— (t—1)b) = 0. Clearly this is true if and only if v, y(a— (¢ —1)b) =0,
where (v, r) denotes the gcd of v and r. Hence the kernel of v, is equal to
the kernel of 1, ,, and the periodicity of d, follows. []

REMARKS 5.4.

(i) If G is a knot group, then any two meridianal generators are conjugate.
Consequently M is trivial. Proposition 5.3 implies that in this case, the
torsion numbers b, and b, are equal for every r.

(ii) It is well known that for any oriented link [ = /;Ul, of two components,
|A(1)| is equal to the absolute value of the linking number Lk(l;,1). (See
Theorem 7.3.16 of [Ka96].)
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PROPOSITION 5.5. Let M be a finitely generated Ri-module with a
square presentation matrix. Assume that A(t) = (t — 1)4g(t), with g(1) # O.
If p is a prime that does not divide g(1), then

3., — o) _ gk
/Bpk _‘Oa bp - ?

for every k > 1.
The proof of Proposition 5.5 requires:

LEMMA 5.6. Let g(t) be a polynomial with integer coefficients, and
assume that p is a prime. If p does not divide g(1), then p does not
divide Res(g,tpk — 1) for any positive integer k.

Proof of Lemma 5.6. Assume that p does not divide g(1). Recall that
®,(¢) denotes the n™ cyclotomic polynomial. From the formula

[T @) = vu(1) = n,

din
a>1
we easily derive
0 ifd=1
O,1)=< g ifd=g>1, g prime
1 other d.

Consequently, @, does not divide g for any k > 0, and so Res(g, - 1) #0.

The module H = R4/(g, P — 1) has order |Res(g, , and it suffices to
prove that H ®z Z/p is trivial. Now, H ®z Z/p is isomorphic to the quotient
of the PID (Z/p)[t,t~'] by the ideal generated by the greatest common divisor
of g and # —1 in this ring. But 1= (t— 1)pk in this ring, and r—1 does
not divide g since p does not divide g(1). So the ged is 1, and H ®z Z/p
is trivial. [

Proof of Proposmon 5.5. Let k be any positive integer. Lemma 5.6 implies
that Res(g,tp — 1) # 0. Hence (3, vanishes, and therefore ﬁpk is also zero.
By a result analagous to Proposition 2.5 and the multiplicative property of
resultants

by = |Res(A, v)| = |Res(t — 1, 10| | Res(g, v0)| = 0")7|Res(g, v)| -

By Lemma 5.6, p does not divide lRes(g, P — 1)‘. Hence p does not divide
Res(g, v,x), and so p®) pe = ph ]
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COROLLARY 5.7. (i) Let M, be the r-fold cyclic cover of S° branched

over a knot. If r is a prime power p*, then the p-torsion submodule of
H\(M,;Z) is trivial.

(i) Let M, be the r-fold cyclic cover S® branched over a 2-component
link l =0 UL. If r is a power of a prime that does not divide 1k(ly,1,),
then the p-torsion submodule of H\(M,;Z) is trivial.

Proof. Statement (1) was proven in [Go78]. Here it follows from Propo-
sition 5.5 together with the well-known fact that |A(1)| = 1, whenever A is
the Alexander polynomial of a knot. The second statement is a consequence
of Proposition 5.5 and Remark 5.4 (ii). [

PROPOSITION 5.8. Suppose that M is a finitely generated Ri-module
that is isomorphic to R1/(A). If A(t) = (t—1)2g(t), where g(1) #£ 0, then for
every positive integer r, there exists a positive integer 0, such that

b, = (6))7 - |[T(R1/(g,v))| -

Moreover, &, , = 6., for all r, where v is the cyclotomic order of A.
r+-y r Y

REMARKS 5.9.

(i) The order |T(R/(g,v,))| can be found using Proposition 5.3 and
Theorem 3.3.

(i1)) When M is a direct sum of cyclic modules, b, can again be found
by applying Proposition 5.5 to each summand. When M is not a direct sum
of cyclic modules but is torsion free as an abelian group, a result analogous
to Theorem 3.6 can be found by replacing # — 1 everywhere by v, in the
proof. As in Section 3, the torsion numbers 5, are then seen fo satisfy a
linear homogeneous recurrence relation.

Proof of Proposition 5.8. Consider the exact sequence
0 — ker g = R1/((t — D%, 1) 5 Ry/(¢ — g, vs) > Ri/(g,v) = 0,

where the first homomorphism is inclusion, the second is multiplication by
g, and the third is the natural projection. The order of R;/((t — 1)?,v,) is
equal to |Res((r — 1)?,v,)|, which is equal to r?. The kernel of g is generated
by v./f,, where f, is the greatest common divisor of g and v,. Notice that
fr4~ =1+, for all r. Lemmas 5.2 and 3.7 complete the proof.  []
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We conclude with a generalization of Corollary 5.7 (11).

When (G, x) is the augmented group corresponding to a 2-component
link [, the epimorphism x factors through 7 : G — G, = Z*. For any
finite-index subgroup A C Z? there is a |Z*/A|-fold cover of §° branched
over | corresponding to the map G — Z? — Z2/A. The cover M, is a special

case corresponding to the subgroup A generated by #; —t,, #{, ;. We denote
the rank of Hj(My;Z) by (B and the order |TH{(Mx;Z)| by by.

THEOREM 5.10. Let [ =1,Ul, be a link in S°. If p is a prime that does
not divide 1k(l;, 1), then By =0 and b® =1 for any subgroup A C Z? of
index p*, k> 1.

Proof. Let M,, be the kernel of 7. We consider the dual M/, which is a
compact abelian group with a Z?*-action by automorphisms induced by conju-
gation in G by #; and t,. The automorphism induced by n € Z? is denoted by
on ; the automorphims induced by (1,0) and (0, 1) are abbreviated by o7 and
o9, respectively. The dual M{; can be identified with a subspace of Fixj(o) =
{p € Mg\ : opp = p for all n € A}. Details can be found in [SWO0O].

From the elementary ideals of M, a sequence of 2-variable Alexander
polynomials A;(#;,#) is defined; when i = 0, setting #; = f, = ¢ recovers
A(r). By [Cr65], Ag(t1,%) annihilates M, . Hence Ay(oy,0,)p = 0 for all
p € My . Consequently, if onp = p for all n € Z* then 0 = Ag(oy, 00)p =
Ao(1,1)p = A(1)p. Recall that A(1) = Lk(ly,1,).

Let

Y={p: My —=Z/p : ougp=pforall neA}.

We identify Z/p with the group of p'™ roots of unity, so that ¥ is contained
in M{; It is a subspace of Fixa(c) invariant under the Z?-action, and it
contains a subspace isomorphic to M, ®z Z/p. It suffices to prove that Y is
trivial.

Our hypothesis that p does not divide the linking number of [; and I,
implies that Ag(#1,%) is not zero. Consequently, Y is a finite p-group and so
its order is a power of p. In view of the second paragraph, the hypothesis
also implies that the only point fixed by the Z?-action is trivial. But

Y] =) 10,1 = |Z¢/ stab(p)|,

where the sums are taken over distinct orbits O, and stabilizers stab(p),
respectlvely Each stabilizer contains A, and so ]Zd / stab(p)‘ is a divisor of

p* whenever p # 0. Hence |Y| is congruent to 1 mod p. Since |Y| is a
power of p, the subspace Y must be trivial. [
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