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THE NONAMENABILITY OF SCHREIER GRAPHS

FOR INFINITE INDEX QUASICONVEX
SUBGROUPS OF HYPERBOLIC GROUPS

by Ilya Kapovich

Abstract. We show that if if is a quasiconvex subgroup of infinite index in a

nonelementary hyperbolic group G then the Schreier coset graph for G relative to H
is nonamenable.

1. Introduction

A connected graph of bounded degree X is nonamenable if X has nonzero

Cheeger constant or, equivalently, if the spectral radius of the simple random

walk on X is less than one (see Section 2 below for more precise definitions).
Nonamenable graphs play an increasingly important role in the study of
various probabilistic phenomena, such as random walks, harmonic analysis,
Brownian motion, and percolations on graphs and manifolds (see for example
[2, 5, 6, 7, 15, 17, 18, 24, 30, 43, 44, 62, 71, 72]), as well as in the study
of expander families of finite graphs (see for example [52, 66, 67]).

It is well-known that a finitely generated group G is nonamenable if and

only if the Cayley graph of G with respect to some (any) finite generating
set is nonamenable. The notion of a word-hyperbolic group was introduced
by M. Gromov [40] and has played a central role in Geometric Group Theory
for the last fifteen years. Word-hyperbolic groups are nonamenable unless

they are virtually cyclic. Thus the Cayley graphs of word-hyperbolic groups
provide a large and interesting class of nonamenable graphs. In this paper we
investigate nonamenability of Schreier coset graphs corresponding to subgroups
of hyperbolic groups.
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We recall the definition of a Schreier coset graph:

Definition 1.1. Let G be a group and let tt: A —> G be a map where A
is a finite alphabet such that tt(A) generates G (we refer to such an A as a

marked finite generating set or just a finite generating set of G). Let H < G

be a subgroup of G. The Schreier coset graph (or the relative Cay ley graph)
T(G, H: A) for G relative to H with respect to A is an oriented labeled graph
defined as follows :

1. The vertices of F T(G,H,A) are precisely the cosets of H in G, that
is Vr:= {Hg\ge G}.

2. The set of positively oriented edges of r(G,#,A) is in one-to-one

correspondence with the set VT x A. For each pair (Hg,a) G Vr x A
there is a positively oriented edge in r(G,//,A) from Hg to Hgit(a)
labeled by the letter a.

Thus the label of every path in r(G,/7,A) is a word in the alphabet
AUA-1. The graph T(G,H,A) is connected since ir(A) generates G. Moreover,

r(G,/J,A) comes equipped with a natural simplicial metric obtained by giving

every edge length one.

We can identify the Schreier graph T(G,#,A) with the 1-skeleton of the

covering corresponding to H < G of the presentation complex of G based

on any presentation of the form G (A | R). If M is a closed Riemannian

manifold and H < G — irfiM), then the Schreier graph T(G,H,A) is quasi-
isometric to the covering space of M corresponding to H. If H is normal

in G and G\ — G/H is the quotient group, then T(G,H,A) is exactly the

Cayley graph of the group G\ with respect to A. In particular, if H 1

then T(G, 1,A) is the standard Cayley graph of G with respect to A, denoted

r(G,A).
A subgroup H of a word-hyperbolic group G is said to be quasiconvex

in G if for any finite generating set A of G there is e > 0 such that

every geodesic in T(G,A) with both endpoints in H is contained in the

e -neighborhood of H in T(G,A). Quasiconvex subgroups are closely related

to geometric finiteness in the Kleinian group context [69]. They enjoy a number

of particularly good properties and play an important role in hyperbolic group
theory and its applications (see for example [3, 4, 8, 31, 34, 35, 36, 37, 38,

42, 45, 46, 48, 51, 53, 55, 61, 70]).

Our main result is the following :
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Theorem 1.2. Let G be a nonelementary word-hyperbolic group with a

marked finite generating set A. Let H < G be a quasiconvex subgroup of
infinite index in G. Then the Schreier coset graph T(G,H,A) is nonamenable.

The study of Schreier graphs arises naturally in various generalizations
of J. Stallings' theory of ends of groups [23, 29, 60, 61, 63]. The case

of virtually cyclic (and hence quasiconvex) subgroups of hyperbolic groups
is particularly important to understand in the theory of JSJ-decomposition
for hyperbolic groups originally developed by Z. Sela [65] and later by
B. Bowditch [11] (see also [59, 23, 28, 64] for various generalizations of
the JSJ-theory). A variation of the Fplner criterion of nonamenability (see

Proposition 2.3 below), when the Cheeger constant is defined by taking the

infimum over all finite subsets containing no more than a half of all the

vertices, is used to define an important notion of expander families of finite
graphs. Most known sources of expander families involve taking Schreier coset

graphs corresponding to subgroups of finite index in a group with the Kazhdan

property (T) (see [52, 66, 67] for a detailed exposition on expander families
and their connections with nonamenability).

Since nonamenable graphs of bounded degree are well-known to be

transient with respect to the simple random walk, Theorem 1.2 implies
that T(G,H,A) is also transient. M. Gromov [40] stated (see R. Foord [27]
and I. Kapovich [49] for the proofs) that for any quasiconvex subgroup H
in a hyperbolic group G with a finite generating set A, the coset graph
T(G,H,A) is a hyperbolic metric space. A great deal is known about random
walks on hyperbolic graphs, but most of these results assume some kind of
nonamenability. Thus Theorem 1.2 together with hyperbolicity of T(G,H,A)
and a result of A. Ancona [2] (see also [72]) immediately imply :

COROLLARY 1.3. Let G be a nonelementary word-hyperbolic group with
a finite generating set A. Let H < G be a quasiconvex subgroup of infinite
index in G and let Y be the Schreier coset graph T(G,H,A). Then:
1. The trajectory of almost every simple random walk on Y converges in the

topology of Y U dY to some point in dY (where dY is the hyperbolic
boundary).

2. The Martin boundary of a simple random walk on Y is homeomorphic
to the hyperbolic boundary dY, and the Martin compactification of Y
corresponding to the simple random walk on Y is homeomorphic to the
hyperbolic compactification Y U dY.
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Let us illustrate Theorem 1.2 for the case of a free group. Let F — F(a, b)
be free of rank two and let H < F be a finitely generated subgroup of
infinite index (which is therefore quasiconvex [68]). Set A {a,b} Then the

Schreier graph Y T(F,H,A) looks like a finite graph with several infinite
tree-branches attached to it (the "branches" are 4-regular trees except for the

attaching vertices). In this situation it is easy to see that Y has positive Cheeger
constant and so Y is nonamenable. Alex Lubotzky and Andrzej Zuk pointed
out to the author that if G is a group with the Kazhdan property (T), then

for any subgroup H of infinite index in G the Schreier coset graph for G
relative to H is nonamenable. There are many examples of word-hyperbolic
groups with Kazhdan property (T) (see for instance [73]) and in view of
Theorem 1.2 it would be particularly interesting to investigate if they can

possess non-quasiconvex finitely generated subgroups.

Nonamenability of graphs is closely related to cogrowth:

COROLLARY 1.4. Let G — (x\,...,Xk I ri,..., rm) be a nonelementary

word-hyperbolic group and let FI < G be a quasiconvex subgroup of infinite
index. Let an be the number of freely reduced words in A — {yi, ,Xk}±l
of length n representing elements of H. Let bn be the number of all words

in A of length n that represent elements of H. Then

lim sup < 2k — 1

ft—>oo

and

lim sup s/bn < 2k.
ft->oo

In [10, 50] Theorem 1.2 and Corollary 1.4 play a useful role in obtaining
results about "generic-case" complexity of the membership problem as well
as about some interesting measures on free groups.

It is easy to see that the statement of Theorem 1.2 need not hold for finitely
generated subgroups which are not quasiconvex. For example, a remarkable

construction of E. Rips [58] states that for any finitely presented group Q

there is a short exact sequence

1 G-y Q-y 1,

where G is nonelementary torsion-free word-hyperbolic and where K can be

generated by two elements (but K is usually not finitely presentable). If Q

is chosen to be infinite amenable, then [G \ K] oo and the Schreier graph

for G relative to K is amenable. Finitely presentable and even hyperbolic
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examples of such subgroups are also possible. For instance, if F is a free

group of finite rank and (j>: F —>• F is an atoroidal automorphism, then the

mapping torus group of </>

M$ (F,tIt~lft - <f>(f) for all /
is word-hyperbolic [8, 13]. In this case M^/F — Z and hence the Schreier

graph for M$ relative to F is amenable.

The author is grateful to Laurent Bartholdi, Philip Bowers, Christophe

Pittet and Tatiana Smirnova-Nagnibeda for many helpful discussions regarding

random walks, to Pierre de la Harpe and Peter Brinkmann for their careful

reading of the paper and numerous valuable suggestions and to Paul Schupp

for encouragement.

2. NONAMENABILITY FOR GRAPHS

Let X be a connected graph of bounded degree. We define the spectral

radius p(X) of X as

p(X) := lim sup s/p^ix.y)
n-^oo

where y, y are two vertices of X and p{n\x,y) is the probability that an

n-step simple random walk starting at x will end up at y. It is well-known
that p(X) < 1 and that the definition of p(X) does not depend on the choice

of x,y.

Definition 2.1 (Amenability for graphs). A connected graph X of
bounded degree is said to be amenable if p(X) 1 and nonamenable if
p(X)< 1.

It is also well-known that nonamenability of X implies that X is transient,
that is that for a simple random walk on X the probability of ever returning
to the basepoint is less than 1 (see for example Theorem 51 of [16]). We

refer the reader to [16, 71, 72] for comprehensive background information
about random walks on graphs and for further references on this topic.

Convention 2.2. Let X be a connected graph of bounded degree with
the simplicial metric d. For a finite nonempty subset S C VX we will denote

by ISI the number of elements in S.


	1. Introduction

