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3. Orbits for the GL^-action on Tq

Any z e Mat(q xq, C) can be written in a unique way as z x + iy, with

x,y G Hq. We will be concerned with the set Tq defined by

(16) Tq {z G Mat(q x q, C) | z x + iy, x G Hq, ye £lq, det z ^ 0}
Its interior is the classical tube domain over the cone £lq, namely

Tq {z e Mat(q x q, C) | z x + ry, ye £lq}

Let G GL(g, C) act on Mat(q x q, C) by

(17) (g,z) '—*£Z£*.
The spaces Hq,£lq,Q.q are stable under this action, and hence Tq and Tq are

invariant subsets under this action. We investigate the orbits and describe a

full set of invariants for this action.

There is a natural invariant associated to a GL(g, C)-orbit. To any z e Tq,
we associate its angular matrix defined by

(18) a a(z) z*

Then the matrix associated to gzg* is g* lag*, so that the angular matrix a(z)

belongs to the same conjugacy class when z runs through a GL(g, C) -orbit.
As we shall see (Theorem 3.3 and Theorem 3.13), this invariant is close to

characterizing the orbits.

Let us first prove some elementary properties of the angular matrix.

PROPOSITION 3.1. Let Z x + iy e Tq, and let a Z* z be its angular
matrix. Then

(i) Sp(a) cUi-{/i C,|/i| ^l};
(ii) if 1 E Sp(tf), then y is degenerate and

{v e Cq \ av v} {v e Cq \ yv 0}.

Proof. Let fx be an eigenvalue of a, and let v 0 be an eigenvector for
the eigenvalue /x. Then zv /xz*v, and hence

(zv, v) fx(z*V, v) fx{v, zv) fX (zv, v).

If (zv,v) 7^ 0, then \/x\ 1. So we now assume (zv,v) 0. This amounts

to (xv,v) 4- i(yv, v) 0, so that in particular (yv,v) 0. Now recall that y
is positive semi-definite. So the condition (yv,v) 0 implies that yv 0.

From this it follows that zv xv — zfv, and as z is assumed to be invertible,
this implies /x I. This shows (i) and part of (ii). Conversely, the condition

yv 0 implies trivially av — v.
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In particular, we may consider the polynomial d{p) det(z — pz*). The

roots of d are the eigenvalues of the angular matrix. The set of these roots,

counted with their multiplicities, will be called the angular spectrum of z.

We first consider the case of Tq. So let z x + iy Tq. Then as y is

positive-definite, we may define its square root y1//2 as the unique positive-
definite Hermitian matrix whose square is y. Then we may write

x + iy y5(y~ïxy"5 + ilq)yi

This shows that any GL(g, C)-orbit contains some element of the form x+ilq,
where x G Hq. But by the classical diagonalization theorem for Hermitian
forms, there exists an orthonormal basis in which the Hermitian form associated

to x is diagonal. In other words, there exists a unitary matrix u and real
numbers Ai > À2 > • • • > A^ such that

uxu* — A

\

\
A2

\)
Moreover, if A and A7 are two such diagonal matrices, then A + ilq and
A7 + ilq are not conjugate under the action of GL(g, C) unless A A7. Hence

we have shown the following result, which of course is the well-known fact
that there is a simultaneous diagonalization for two Hermitian forms if one
of them is positive-definite.

THEOREM 3.2. The set of matrices of the form

\\ + i \
(19) A

A2 + i

\ A
q + ij

with Ai > A2 • • • > A
q is a full set of representatives of the GL(g, C) -orbits

in Tq.

The angular matrix associated to A is

/
/ A1—i

(20)

A2 +/
A2—/

\ _-i- r
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The latter is a semi-simple matrix with spectral values

H
Xj+ i
Xj- i

for 1 < j < q. Observe that these spectral values are complex numbers of
modulus 1, but always different from 1. From the uj we may recover the Ay

by the formula

Xj — i
1 + ßj

1-ßj
From these observations we get the following result.

THEOREM 3.3. Two elements z and z! of Tq belong to the same

GL(g, C) -orbit if and only if their angular matrices are conjugate. The angular
spectrum is a full set of invariants for the action of GL(g, C) on Tq.

The situation for Tq is more complicated. In fact we may consider the

extreme case where y 0. Then x corresponds to a non-degenerate Hermitian
form, and the orbit picture is given by the signature. So we need to consider
matrices of the form

/i
T T,n_l_ ,n_

\
1

-1

V -1 /
with n+ diagonal entries equal to +1 and diagonal entries equal to — 1,

n+ and being arbitrary nonnegative integers such that n+ +n_ q. The

corresponding angular matrix is the identity matrix lq.
Another source of difficulty comes from the fact that it is not always

possible to find a basis in which both Hermitian forms associated to x and y
are diagonal. For instance if q 2, consider the matrix

0 .(\ oN

0 0z

Notice that its angular matrix is

which is not semisimple.

- 0
2 u

1 0

1 1

F i
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From these examples we see that neither the angular spectrum of z nor

the conjugacy class of the angular matrix characterizes the orbit of z.

Let n\, «2, ^3,^4 t>e f°ur nonnegative integers such that j%\ +2^2+^3+^4 q,

and let Ai, A2,. - An, be n{ real numbers satisfying the condition

Ai > A2 > A„,

To such data we associate the matrix A A(Aj, A2,.. -, AW|, n2, nf)
given by

/ Ai + i \

(21)

An\ + i
i 1

1 0

i 1

1 0

-1/

where there are n2 diagonal 2x2 submatrices of the form ^ ^
^

n3 diagonal terms equal to 1 and n4 diagonal terms equal to — 1.

THEOREM 3.4. Any GL(q, C) orbit in Tq contains one and only one

matrix of the form A(Ai, A2, A„,, 722, ^3? ^4).

Before beginning the proof, let us prove a couple of lemmas. Lemmas
3.6 and 3.7 are related to the classical Gauss's algorithm for diagonalizing an

Hermitian form. Let r, s,n be three nonnegative integers such that r + s n.

LEMMA 3.5. The Stabilizer in GL(/?, C) of the matrix yr ^
^ is

the subgroup

HO;(22) Gr

where u G U(r), v G Mat(r, s), h G GL(^, C).

Proof Easy computation.
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Now we study the action of Gr in Hn. If x E Hn, let us write

a b

b* 7

where a G Hr,b G Mat(r x s, C) and 7 G Hs. If g => ^ GGr, then

* / a7 b' \
9x9 =\b'* i)'a7 uau* -f ubv* + + ^7^*

Z/ ubh* + vyh*

77 h^/h*

LEMMA 3.6. Le? x ^ e Hn, with a G Hr, b G Mat(r x C)

and 7 E Hs Assume det7 7^ 0. TZzezz ?Zze orZ?zY 0/ x zzzzder Gr contains a

matrix of the form ^ ^ with a! G //r.

Proof This is a consequence of the previous formula with u — lr,
u —Z?7-1 and Zz ly.

Lemma 3.7. Ler x
&* 0 ^ ran^ ^ " s ^S0 Part^cu^ar

r > s). Then the orbit of x under Gr contains an element of the form

with ß G Hr-S.

Proof Consider the subgroup | ^ ^), u G U(r), h G GLy(C)j. It

acts on the component b by b' zzZzZz*. As rank(Z>) 5, we may think of b

as a set of s independent vectors in Cr. By the Gram-Schmidt process, it is

possible to find h G GLy(C) such that bh* is a s -orthonormal frame in Cr.
But now two such frames are conjugate by the (left) action of U(r). Hence

there exists u G U(r) such that

ubh*
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The matrix x we started with is conjugate under Gr to a matrix of the

form

0 h 0

where a! G Hr_s, ß £ Hs and c G MahXr-s) x s, C). Now we use the action

of the element

A
G Gr

\ 0 0 1s J

to get the result.

We are now ready to start the proof of Theorem 3.4.

Step 1. Let z x + iy G Tq. As y is positive semidefinite, there exists

an element g G GL(q, C) such that

/1 \

gyg
l

o

V o/
with r diagonal entries equal to 1, and s diagonal entries equal to 0,
r and 5 being nonnegative integers satisfying r + s q. In other terms, any
GL(g, C) -orbit in Tq contains an element of the form

a + ilr bN

b* 7 y

with a G 7 G Hs,b G Mat(r x C).

Step 2. Now assume a is of the form

OL T ïlr
b* 7y

Consider 7. It is an Hermitian matrix of size s, and under the action of
GL(^, C) it can be transformed to

0„2 0 0

0 1/13 0

0 0 -1,
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where n2 + n2 + 714 s. Hence x is conjugate under the action of Gr to an

element of the form
a b' c'\

b'* 0 0
cA* 0 T /

where a G Hr, br G Mat(r x ti2, C), c' G Mat(r x (n2 + 714), C) and

Using Lemma 3.6, we see that x is conjugate under the action of Gs to an

element of the form
a" b" 0\
b"* 0 0

0 or/
with a" G Hr, b" G Mat(r x n2, C).

Step 3. Assume now that

with a G Hr and b G Mat(r x tz2, C). Recall that

/ a + ilr b 0 \
x + iy I Z?* 0 0 J

V 0 or/
is assumed to be invertible. This shows that rank(b) n2. So we may apply
Lemma 3.7 to see that x is conjugate under Gr to an element of the form

(ß 0 0 °\
0 0 1«2 0

0 1«2 0 0

\0 0 0 Y /
with ß G Hr-n2.

Step 4. Set rt\ r-n2. The last step is just to put the element ß G Hni

in diagonal form under the action of U(wi). Up to minor rearrangements of
the matrix, this shows that any GL(g, C) -orbit in Tq contains an element of
the form A(Ai,..., Xni, n2, n2, nß).
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Step 5. It remains to show that two A's are not conjugate under GL(q, C).

The angular matrix associated to A(Ai,..., Am, «2? n?,,nf) is

/ Ai±i \
I Al_i

1

Yij ~\~i

1 0

2 I 1

1 0

2I 1

1

\ 1/

where there are n2 2x2 submatrices ^
^

>
an(^ n3 + ^4 diagonal

elements equal to 1. From the Jordan normal form theorem, we deduce
; that if A(A],...,\nx,n2,n2,nf) and A(Aj,....., A^,n!2,n!3,n!f) are in a same

; GL(g, C)-orbit, then n\ n\, Ay Aj for all 7,1 < j < n\, n2 n'2 and

I n3 + n4 .«3 + «4. Now the matrix A(Ai,..., Ani, «2? w3, «4) L + IM and

A' 1/ + IM', with L,L',M,M' <E Hn. As A and A' are supposed to be in
I the same GL(g, C) -orbit, L and L' are also in the same GL(g, C) -orbit, and

so they must have the same signature. This forces n2 n3 and nf4, and

hence A A'.
j We can now give the solution to the orbit problem we addressed at the end

of Section 2. Recall that for any integer r such that 0 < r < q we defined

\ ~(r)
j Tq {z x + iy I y G £lq, rank(y) < r, z invertible}
i
:]

Lemma 3.8. Let n\^n2^n2^n^ be four integers such that

n\ + 2n2 + n2 + q,

and let Ai,...,A% be n\ real numbers. Then the standard matrix A
'I ~(ô
j A(Ai,. T., An,, «2? n3, n4) belongs to Tq if and only if n\ +n2 < r.
"

I In fact the rank of ^(A — A*) is n\ + n2.
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THEOREM 3.9. Any GL(g, C)-orbit in Tq contains a unique standard
matrix A((Ai,..., Ani, W2> n^^nf) with n\ + n2 < r.

We now want an analog of Theorem 3.3. As we have already noticed,
the conjugacy class of the angular matrix does not determine the orbit of the

matrix. We need a finer invariant, which we will construct now.

LEMMA 3.10. The space Tq is connected and simply connected.
}

Proof. As Tq is connected and TqcTqC Tq, the space Tq is connected.
Take ilq as base point in Tq, and observe that for any z Tq and any s > 0,
z + islq is in Tq. So if (7(t), t G [0,1]) is a path in Tq starting and ending
at ilq then we can deform it by homotopy to js(f) 7(Y) + is(s — l)lq,
which for s > 0 is a path inside Tq. But Tq as a tube-type domain is simply
connected.

The function z det(z) is a continuous function from Tq into C*.
From Lemma 3.10, there exists a unique continuous determination of the

argument of det(z) denoted by argdet: Tq —» R such that arg det ilq q|.
If Y G Qq, then arg det iy qj. If z G Tq and g G GL(g, C), then

det gzg* | det p |2 det z, and gilqg* igg* G iQq, so that

arg det gzg* — arg det z •

This provides a new invariant for the action of GL(g, C) on Tq.

Lemma 3.11. Let A A(Ai,..., Ani,n2j«3?nf). Then

(23) arg det A arg(Ai -F 0 H h arg(Ani + i) + n2tt + n47r

where arg is usedfor the principal determination of the argument of a non-zero
complex number.

Proof. We need to describe a continuous path from ilq to A inside Tq.
For clarity of exposition, we describe successively the path for each diagonal
block (either a one-dimensional or a two-dimensional submatrix) of A, and

compute the contribution of each block to the function argdet.

For a block of the form A + i, with A G R we use the path t f— tX + /,

0<t< 1, and so the contribution of this block is arg(A + i).
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For a block of the form ^ j Jj, we use the path

0 id-f2))'
The corresponding determinant of this 2 x 2-block is constant along the path

and equal to —1. Hence the contribution of this block is 2Ç it.
For a block of the form 1, we use the path t 0 < t < 1, and

we see that the corresponding contribution is 0.

For a block of the form —1, we use the path t i—» el^l+t\ 0 < t < 1,

and we see that the corresponding contribution is ir.
Putting together the contribution of the blocks, we get the result.

COROLLARY 3.12. Let A and A' be two standard matrices. Assume that
their angular matrices coincide and that arg det A arg det A'. Then A h!.

Proof. In fact we noticed that the equality of angular matrices implies
the equality of the parameters except for n3 n3 and «4 n'4. But from
(23), we see that the equality of the determination of the arguments of the
determinants implies n4 n4 (and hence n3).

Now we can state the conclusion of this section, which is a consequence
of Theorem 3.4 and Corollary 3.12.

THEOREM 3.13. Let z,zr G Tq, and assume that the angular matrices of
z and z! are conjugate, and that arg det z arg det z' Then z and z! belong
to the same orbit under the action of GL(q, C).

Remark. Let z e fq. Let a Then

det z odeta I det z (detz)2
detz

So 2 arg det z is a determination of arg(deta). If z and z! are two matrices
in Tq with the same angular matrix, then arg det z and arg det z! differ by an
integral multiple of 7r. So the new invariant needed to characterize the orbits
under GL(g, C) has to be regarded as a Z-valued function. In this sense, it
is a generalization of the signature.
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