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- If X is'a divisor in M the bundle thus defined is equal to Oy (X)|p. In
particular, if X is a central fibre in a semistable degeneration X — S, then
Ox(X) = Ox so Op(X) = Op. This gives a necessary condition for being a
central fibre.

1.8. DEFINITION. The normal crossings surface X is d-semistable if
Op(X) = Op.

A consequence is the triple point formula: let D; = X; N X; and denote
by (Dij)ﬁi the self intersection of D; on X; and by Tj; the number of triple
points on D;;. Then (cf. [P, Cor. 2.4.2])

Dy)y, + Dy)x, + T =0.

1.9. DEFINITION. A compact normal crossings surface is a d-semistable
K3-surface of type Il if X is d-semistable, wy = Oy and each X; is rational,
the double curves D; C X; are cycles of rational curves and the dual graph
triangulates S2. If the conclusions of the Minus One Theorem hold, that every
component of the double curve has self intersection —1 on either component
of X on which it lies, the surface X is said to be in (—1)-form.

2. TETRAHEDRA

2.1. To realise a tetrahedron we start out with four general planes in
3-space. They do not form a d-semistable K3-surface, but the dual graph
is a tetrahedron. To write down a degeneration with this special fibre we
just take the pencil spanned by T = xpx;xpx3 and a smooth quartic. The
symmetry group of the tetrahedron (including reflections) acts if we only take
S4-invariant quartics: '

Q = ao} + boioy + cos + dojos,

where the o; are the elementary symmetric functions in the four variables x;
and a, b, ¢ and d are constants.

To obtain a family f: X — § one has to blow up the base locus of the
pencil. This can be done in several ways. Blowing up 7 = Q = 0 gives
a total space which is singular, with in general 24 ordinary double points
coming from the 24 intersection points of ¢ with the double curve of the
tetrahedron 7. Arguably, this is the nicest model, and the best one can hope
for in view of the theory of minimal models of 3-folds. A smooth model is
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obtained by a suitable small resolution of the 24 singularities. The quartic
intersects each edge of the.tetrahedron in four points. To get the (—1)-form
two of them have to be blown up in one face and the other two in the other
face. The central fibre then consists of four Del Pezzo surfaces of degree 3.

Alternatively one can blow up the irreducible components of T=0=0
one at a time. The advantage is that one has a projective model. However
it 18 not in (—1)-form and furthermore the symmetry is not preserved. To
achieve (—1)-form we have to apply modifications of type I; here we might
lose projectivity.

2.2. THE TETRAHEDRON OF DEGREE 12. We glue together four Del Pezzo
surfaces of degree 3. Take coordinates xi, ..., X4, Y1, ..., ya on P7. Let
{i,j,k, 1} = {1,2,3,4}. The Del Pezzo surface X; liesin y; = xj = x; = x; = 0
and has an equation of the form

Yiyeyr — XiFi(xi, yj, ye, y) = 0,
where F; is a quadratic form; more specifically,
Fi= ) 2%+ D> £ Yays+ Y 98 xiVa + hix? .
aFi o, BF#i i

The condition that X; be nonsingular in the vertices of the triangle x; =
yiyiyir = 0 is that the coefficients f*“ in F; do not vanish.

The ideal of the tetrahedron X = UiX,- has 14 generators, the 4 cubic Del
Pezzo equations y;yry; — x;F; and 10 quadratic monomials: the six products
x;x; and the four products x;y;. The relations among them are:

(eixj) X — (xixg) X;
(Y1) x; — (xXix;) yi
Ojyeyr — xiF3) xp — ey yive + (xixy) F
Oy — xiFD) yi — Qpyiye — xiFy) yi — ey Fr + (qyi) Fy

(2.1)

2.3. PROPOSITION. The tetrahedron X is d-semistable if and only if the
four equations

7 lkkjj_ll _ fjkkfkll zjj -0
are satisfied.
Proof. We look at the chart y; = 1. Then x4 = 0 and we have the

equations x;xj, x;y;, yiy,y3 and Yiyj — X Fy. In all points near the origin
yiy2ys +— 1 is generator of the infinitesimal normal bundle Op(X). We
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now look on the y,-axis. The equation y,y; — x3F3 shows that the section
yiy2y3 — 1 has a pole in the zeroes of F; restricted to the y,-axis, and
likewise in the zeroes of F; (using the equation y,y; — x1F7).

This shows that the expression, given in homogeneous coordinates by

(7253 +140ya + FDUYE + £ y0ya + £595D)
Y1Y2Y3Y4 ’

represents a non vanishing holomorphic section of Op(X) on the whole line
y1 = y3. Similar expression can be found for the other edges of the tetrahedron.
We get a global section if and only if we can find a quaternary form f of
degree 4 which restricts to a multiple of the above denominator for each line.

For each face we find from the following lemma the condition that the
12 points in the corresponding hyperplane be cut out by a quartic. We obtain
four equations, which in fact are not independent: under our assumption that
all J; are different from O one can derive one equation from the remaining
three. They give necessary and sufficient conditions for the existence of the
quaternary quartic. [

2.4. LEMMA. Consider 3n points P;, with P;, ..., P;, smooth points
of the triangle x1x,x3 = 0, lying on the side x; =0 and given by the binary
form Bi(xj,x¢) = > " _obim x'x; ", where (i,j,k) is a cyclic permutation of
(1,2,3). These points are cut out by a ternary form of degree n if and only
if

b1obaobzo = b1nbonbsn -

Proof. Suppose A(x1,X2,X3) = ) tmtpn Yimp xtxx4 cuts out the points.
Then A(0O,x;,x3) is proportional to Bj(xz,x3), SO (Aono :aoon) = (b10:b1n).

Likewise we have that (ago,:dn0) = (bao:by,) and that (a,:aon) =
(b3o : b3,). Multiplying these ratios gives the condition.
Conversely, to find A we may suppose that by = b3, = 1 = ao

(as no point lies at one of the vertices). We put A(0,xz,x3) = Bi(x2,x3),
A(x1,x,,0) = Bz(x1,x). We also can take by = app,. As by, = apon the
condition gives now by, = b3y = a,o0 and we can set A(x,0,x3) = By(x1,x3).
The remaining monomials in A are divisible by x;x;x3; and do not matter. []

2.5. REMARK. It is not surprising that only the extremal coefficients by,
b;, are involved, as they depend only on the product of the coordinates of
the points. Ignoring the other coefficients we rename: by =: bjx, by, =: by.
The condition becomes bbby = bjibyby;, which is the form used in the
proposition above.
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2.6. INFINITESIMAL DEFORMATIONS. We compute embedded deformations
modulo coordinate transformations. To this end we look at the equations as
defining the affine cone C(X) over X. We follow the standard procedure (see
e.g. [S1]): given equations f;, satisfying relations ) fir; = 0, we have to lift
the equations to F; = f; + ¢f/ and the relations to R; = r; + rl], satisfying
S F;R; =0 (mod €*). This means that we have to find f/ such that ) f/r;
lies in the ideal generated by the f;. Using undetermined coefficients this is
a finite dimensional problem for each degree. The deformations of C(X) in
degree 0 give embedded deformations of X in P’, while those in degree
< 0 have an interpretation in terms of extensions of X : they tell us of which
varieties X is a hyperplane section. Our main interest lies in the degree 0
deformations, but as preparation we first compute those of negative degrees.

2.7. PROPOSITION. The dimension of Té(X)(—2) equals 4 and we have
dim T(l;(X)(—l) = 16. In case X is d-semistable dim Té(}O(O) = 22, otherwise
it is 21.

Proof. Degree —2: we perturb the quadratic equations with constants
and the cubic equations with linear terms. Write x;x; + a;;. The first type of
the relations (2.1) then gives a;;xx — apx; = 0 € O¢), s0 azx = 0. Also the
equation x;y; are not perturbed Consider yjyry; — x:F; + > afxq + > by, .
The third relation gives a/x; + Za 4 bi'%ya = 0 so we conclude that all
coefficients vanish, except the a;, which we may choose arbitrary. The last
type of relation is then also satisfied.

Degree —1: consider the perturbations

Xix; + Zay Xo + Zby Yo -

In the local ring we obtain the equation
U X + Zbu XVa —akx?‘ + Zbkxjya =0,
aFk aF#j

from which we get b =0, aj; = aj; = 0. We now put

X;y; + Zau Xo + Zbu Vo -

al x] + Z b Xjyo — aé xy; =0.
]
We conclude af; =0, b} =0 for all j # i and finally a{]'- = b;. In particular

a; 1s independent of j. We can use the coordinate transformation x; — x; — bl;

We find
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to get rid of the a -term. So the equations x;x; are not perturbed at all. This

means that x;y; is only perturbed with the term a”x,,’whlch can be made to

vanish by coordinate transformations in the y;-variables. As above we find that

the only allowable perturbations of the cubic equation y;yxy; — x;F; are those

divisible by x;. As we have used all coordinate transformations, all monomials
%, x;y; can occur. This makes the dimension of T'(—1) into 4 x 4.

i°

Degree 0: we proceed in the same way by first considering the pertur-

bations
XiXj + Zal] X, quﬁxayg + ch]ya Zd;‘ﬁyayg .

Multiplied with x; this gives the following terms in the local ring:
k
aﬁ)ﬂi + Z bijﬁX%)’ﬁ = Z cg-‘xkyi -+ Z dg‘ﬁxkyaylg .
BF#k aFk o,B#k

We conclude that all coefficients occurring here Vamsh In particular a = 0.
Using the coordinate transformations x; — x; — a. ;Xi We may suppose that all
a;; vanish. We are left with

7
XiXj + Z b;-ﬂxiy/@ + Z bl-JJ'-'BxJ'yﬂ + dlkjlykyl .
With the perturbations
xlyl+zalz Yo quﬁxayﬁ_*—zcuya Z dgﬂyayﬂ}?
ot oti ot o Bt

where we used coordinate transformations x; — x; — chy;, x +— x; — dilyj,
yi — y; —aix; and y; — y; — blly] to remove some coefficients, we now get
(using the jth Del Pezzo equation)

x +ij,8x2y,6’+zcuxjya+ Z d XiYaYB— Zle Xjyiyg — dkl = 0.
aFi o, B

Using the explicit expression for F; we obtain the equations

af, = dk-lh' bif = dkng : cf = difee,
Kl _ gkl ckl ' Kl i
Eedy, d=d o =l

We can determine all coefficients, but because c¢{f does not depend on j, we
“get two equations for it:

kiegll 1 qjlell
dljfj = ¢; = dyfy -

We view these as one linear equation for the unknowns d;. The coefficient
matrix of the resulting linear system is
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0 kjj _ ljj 0 0 0 \
"J?kk 0 e 0 0 0
foo=fH 0 0 0 0
fikk 0 0 0 _flkk 0
—fL 0 o0 ff o0 0

0o 0 0 —fi fi 0

0 fill 0 _ jll 0 0 |

0 _fijj 0 0 0 fl]J”

o o0 0 fio0 —f

o o £ o o -

0 0 —ﬁkk 0 ];_kk 0 /

\ -0 0 0 0 —f i
It has a nontrivial solution if all 6 X 6 minors vanish. Among those are
ﬁkkfélﬁ]j(fglﬁkkf}ll _ﬁkkf}cllféﬂ)
from which we obtain that the square of
, el
f",cJ] lkkJ;ll _f]‘_k kl l]]

lies in the ideal of the minors. This is one of the four conditions for
d-semistability. There are three more equations

j Ul pii pkk kk ¢ Jj oIl pii
RGRE =11

in the reduction of the ideal of minors, which do not give new conditions if
the £ #0, as

kk ¢ £JJ pll pii ok ke £Jj Ul pii
P
ji phe ¢ ¢ Jj phk ol ke 11 ¢ jj kk i ¢ pii pkk o1l U pii pkk
=11'/; (fkjjfz JS —]3 i zﬂ) +J§' fljj(flnfi e S

Under the d-semistability conditions the rank of the matrix is 5, and we obtain
one infinitesimal deformation, where the quadratic equations are perturbed.
Furthermore one has the perturbations of the cubic equations alone, which
as before have to be divisible by x;. We have already used 44 coordinate
transformations. The coefficient of x;y,ys can be made to vanish with a
transformation of the type y, — y, —ex;. So we have 28 coefficients left
and the diagonal coordinate transformations, giving dimension 21. [

The computations in negative degree show that the tetrahedron X is only a
hyperplane section of threefolds with two-dimensional singular locus, obtained
by gluing together four cubic threefolds.
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2.8. We want to describe an explicit deformation in the d-semistable
case. We use the coordinate transformation x; — (ff/f*)x;, i =1, 2, 3,
which gives /£l /f* as coefficient of y; in the new F;. The d-semistability
conditions yield that the new coefficients satisfy f¥ = Ji*. We will denote
them by f;;. A solution to the linear equations above is then dj = dfy;, with
d a new deformation variable. Furthermore we use coordinate transformations
to remove the y,yg terms from the F;.

We set H; = gij yj+91k )’k+9fyz+hl-x,-. With this notation we get the following
infinitesimal deformation :

xixj + dfayeyr — dfyfa(xiy; + xvi)
xiyi + d(fua H + fuxHy + fe xiHy + ] + Fafigyi + fufuyD)
YiYeYr — xi(ﬁjy]? ‘i‘fik)’% +fil)’12) - X?Hi
+dyi (i + iy} + igha + Fufifvie + Safie + fufplfay?)
+ dfyfafiyi + dvi(fafa xiHy + fufa xiHy + fafie xiHy) -
If we try to lift to higher order complicated formulas arise, and it is not clear
whether the computation is finite. It does stop if we restrict ourselves to the
case of tetrahedral symmetry. Then f; does not depend on (i,j), and we call
the common value f ; likewise g is the value of all g/, and & that of the h;.
We retain the notation H; = g(y;+yx+y;)+hx;. By a coordinate transformation

x; — x; 4+ df?y; we simplify the expression for the first 6 equations. We write
t for the deformation parameter.

2.9. PROPOSITION. The following set of equations defines a degeneration
of K3-surfaces with special fibre a tetrahedron of degree 12 :

xixj + tf o — fH) oy — tfH)) ,
xiyi + fOGH; + xiHy + xiH) + 7207 + 7 + ye 0,

Yy — a7 + 57 4 Y +y1) — x H;
— 22 (yiHH, + yiHH, + yiH;iHy) + 20 HH H, .

The general fibre is a smooth K3-surface lying on P! x P! x P!,

Proof. We suppress the computation. For 7 # 0 the cubic equations lie
in the ideal of the quadrics. We can write three independent equations

xi(yi — ofH;) — x;(y; — fH))
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which together with the first six define P! x P! x P': each square in the
following picture gives an equation, where we put z; := +/—1tf (y; — tfH)).

/

<1

X2
g — X3

3 X4

4 /

Xy —mm 22

We obtain the K3 by taking the complete intersection with the quadric
Sy + 3tfH; 4+ 4%y7). O

2.10. THE RELATION WITH QUARTICS. We can construct a degree 12
tetrahedron from four planes in P? by first blowing up each plane in 6 points
and then gluing them back together. Therefore we first describe the blow up
in a way adapted to our situation.

Let two points lie on each side of the coordinate triangle in P? with
coordinates (z;:22:z3). We describe them by z = z7 + ajziz; + byz; = 0,
where (ijk) is a cyclic permutation of (123) (this means that we choose an
orientation on the triangle). As cubics through the six points we take the
coordinate triangle and three cubics, each consisting of a side and a quadric
passing through the remaining four points. More precisely, we take

X0 — 212223 ,

Yi = 2@ — awzaz + bu(@ — ayziz; + byzl)) .
One computes the relations
zyj — byziye — (1 — byibjbi) zi — aijzj + bybjarizi)xo = 0.

By the Hilbert-Burch theorem the maximal minors of the relation matrix

0 23 —b12zo  —(1 = b12bazb31) 21 + a1p20 — biabyzaziza
—by323 0 23 —(1 = b12b23b31) 20 + ax3z3 — basbsianz;
2 —b312) 0 —(1 = b12b23b31) 23 + a31z1 — by1bnanz

give the cubics, up to a common factor 1 — bjyby3b3;. By Lemma 2.4 this
factor vanishes exactly when the 6 points lie on a conic.
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Viewing the relations as holding between the z; gives the coefficient matrix

(1 = b12basbs1) xg  brays — anxo biabyzasi xo — y2
basbsrainxo —y3 (1 — bipbasbs)xg  y1bas — axsz xo
b31y2 — az1 xo biabsraxzxo —y1 (1 — b1abazbsy) xg

Its determinant is the equation of the surface. After dividing by byyby3b31 — 1
it equals

y1y2ys — Xo(b12y3 + basyi + ba1y3)
— xp (aranbsiy: + anasibrys + asianbsyr — (@nys + asy + asy2)(1 + bbybsr))
— %5 ((1 — biabyabs1)” + (1 + biabybs)ananas + biabias; + byubsiat, + b12531a%3) :

This last formula also works if the 6 points lie on a conic, but then it is
easier to take the y; as product of a side and the conic through the 6 points;
this means adding a multiple of x; to each y;. The equation then becomes
yiy2ys — xoQ(y) with Q(z) the conic.

Now we apply this to our tetrahedron. We choose an orientation and orient
the faces with the induced orientation. We get variables x; and y;. For the
face i we take x; = zjzzz; as before, but we multiply y; by a factor \; to be
determined later. So we set y; = )\ijzj(zlz+. ..). We look at the line z3 = z5 = 0,
with coordinates (z; :z2). Via the coordinates of face 0 we get the embedding
1 :y2) = (Mo1b31z1 - Aoazo) whereas face 3 gives (y1:y2) = (A3121: A32bp222).
The condition that the Del Pezzo surfaces are glued in the same way as the
planes yields the equations AgjA32b31box = AppA31. By even permutations of
(0123) we get in total six equations. They are solvable if and only if

bo1610b02b20b03b30b12b21b13b31b23b37 = 1,

a condition obtained by multiplying the six equations.
The d-semistability conditions f"f*f" — f*f!f¥ = 0 give for the cubic
above, using (jkI) = (123): ‘
bso b1o b2 bos bor bop:
MM M AR A% A

Using the fact that the \; satisfy the equations A3bpy/A31 = Aoa/(Ao1b31)
we see that this condition is equivalent to b5,b3,b%; = bi,b3;b5,, which is
one of the conditions that the 24 points be cut out by a quartic.

We can ask which choices of 24 points give our symmetric tetrahedron.
The condition [] b; = 1 limits the possibilities. In particular, if all b; = 1, the
six points in each face lie on a conic, giving a singular tetrahedron. If we take
the quartic Q = (ao? + bo,)? then each element of the pencil has 12 singular
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points. We can blow them up and blow down the six conics in the faces by
embedding the pencil in P7 x P! with the linear system of cubics in P? with
as base points the 12 singular points. We set

Xi = ZiZkl

Vi = Zi(CZO'lz -+ bO'z) .

We obtain a symmetric tetrahedron with g = h = 0.

We get nonsingular Del Pezzo surfaces by taking all b; = —1, and
a; =a. Then f = —1, g = —a* and h = a* + 4. The points on the side of
the tetrahedron are given by

@ + azizj — 2)(—2 + azizj + 2) = (=2} + R + @) 7}z, — 2) -
J 7 J J J

In particular, we obtain different smoothings of the same tetrahedron, those
embedded in P’ and others where the general fibre is embeddable in P?.
They belong to different 19-dimensional hypersurfaces in the 20-dimensional
subspace of the versal deformation whose general fibre is a smooth K3 -surface.

3. DEFORMATION THEORY

3.1. Let X = |JX; be a normal crossings surface with normalisation
X =[] X;. The components of the double locus D are D; = X; N X;. The

divisor D; := |JDj; is a normal crossings divisor in X;. We set D = [[D;.
J
As X is locally a hypersurface in a 3-fold M, its cotangent cohomology

sheaves 7 vanish for i > 2 and

0 — 7Y — Oplx — Ny — Ty 0.

There is a canonical isomorphism 7{ = Op(X) and in particular, if X is
d-semistable, then 73! = Op [F2, Prop. 2.3].

3.2. LEMMA. There is an exact sequence

0— 7Y — n,0z(logD) — T — 0.

Proof.  This is a local computation. The sheaf ®y,(logX) of vector fields
on M which preserve zizpz3 = 0 is generated by the Zia%- Restricted to
a component X;: z; = 0 we get sections of Oy.(logD;). The restrictions to
different components satisfy the obvious compatibility condition. [
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