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ELEMENTARY CONSTRUCTION OF

EXHAUSTING SUBSOLUTIONS OF ELLIPTIC OPERATORS

by Terrence Napier*) and Mohan Ramachandran f

Abstract. By a theorem of Greene and Wu [GreW], a noncompact connected
Riemannian manifold admits a C°° strictly subharmonic exhaustion function. Demailly
provided an elementary proof of this fact in [D]. A further simplification of Demailly's
proof and some (mostly known) applications are described. Applications include the
fact that the holomorphic line bundle associated to a nontrivial effective divisor on a

compact connected complex manifold X admits a C°° Hermitian metric with positive
scalar curvature.

Let (M,g) be a Riemannian manifold of dimension n. The Laplace
operator Ag for g is given in local coordinates (x\,..., xn) by

A C2 real-valued function <p is called subharmonic (strictly subharmonic)
with respect to g if Agp > 0 (respectively, Ag(p > 0). A real-valued function

p ona topological space X is called an exhaustion function if

0. Introduction

for every function (p of class C2 ; where

G det (gtj)and

{iex|p(jt)<a} ccx VaeR.
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A special case of the main result of this paper is the following :

Theorem 0.1 (Greene and Wu [GreW]). A connected noncompact Rie-

mannian manifold M admits a C°° strictly subharmonic exhaustion function.

Greene and Wu actually produced a proper embedding by harmonic
functions and obtained the above as a consequence. Thus their proof is

not elementary. A related construction is that of Ohsawa [O] of a strongly
n -convex exhaustion function on an ft-dimensional complex space with no

compact irreducible components. Demailly [D] provided an elementary (and

relatively simple) proof of Theorem 0.1 (his proof is written for the case of
the Laplace operator of a Hermitian metric, but it can be modified to give
the above theorem). His method is a version of the classical idea in Runge

theory in one complex variable of pushing singularities to infinity using a local
construction. His local construction, although short, requires some calculations
which are not completely transparent.

Theorem 0.1 is of some importance. It implies, for example, that the top
homology of an open manifold vanishes (cf. Theorem 2.2 below). Demailly
gave his version for applications to g-convex spaces It can also be used

to give a simple proof of the Behnke-Stein approximation theorem for open
Riemann surfaces. We hope to return to this question elsewhere.

In this paper, we give a local construction which is very simple and

transparent. It is based on the following observation which is of some

independent interest.

Bump function LEMMA. Let B be a domain in M, let K be a compact
subset of B, and let W be a nonempty open subset of B\K. Then there exists

a nonnegative C°° function a on M such that a: 0 on M\B, > 0 and
Agot > 0 on K, and Aga >0 on M\W.

To conclude this introduction, we give an outline of the ideas in the proof
of the main theorem. For the bump function lemma, we may assume without
loss of generality that W CC B CC M and we may fix a domain U and a

nonnegative C°° function p on M such that

K U W C U CC B p > 0 on U and p < 0 on M\B

Replacing p by an approximating Morse function (see, for example, [GoG]),
we may also assume that p has only isolated critical points in B. Fix a
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regular value e > 0 for p with p > e on U and let V be the component of
{ jc G M I p(x) > e } containing U. Thus U C C V C C B.

We will say that a mapping <I> : TV -A N of a connected smooth manifold
jV onto itself has compact support if O is equal to the identity outside a

compact set. Given two points p,q G N, there exists a C°° diffeomorphism
O : N —» TV with compact support such that 0(/?) q (for the set of points

q in N to which p can be moved by such a diffeomorphism is open and

closed). For distinct points p\,... ,/?m, q\,..., in Af, one gets such a <D with

0(p7) qj for / — 1..... m by forming a compactly supported diffeomorphism
of N\ {/?!,... ,Pj,... ,pm,q\,..., qj,...,</,„} moving p, to for each

y 1,..., m and letting O be the composition of the extensions by the

identity for d>i,..., <Fm.

Thus we may move into W the critical points of p in V by a

diffeomorphism with compact support in V, and hence we may assume that

Vp / 0 at each point in V \ W D K. For R > 0, let ß — eRe. Then

Agß ReRP(Agp +R\Vp\2)>0
on V\W, provided R 0. Finally, fixing a C°° function x '• R ^ such

that x(0 — 0 for t < 0 and x7(0 > 0 and x"(0 ^ ^ for /^ > 0, we get a

nonnegative C°° function

f x(® on V,
rv <

[0 on M \ V.

On V\W, we have a > 0 and

Aga x'(ß)^gß + X"(ß)\V/3|2 > 0

It follows that a has the required properties.
For B a coordinate n -dimensional rectangle (or another nice set), one can

easily construct such a function a explicitly (see Lemmas 1.6-1.8). Moreover,
such bump functions are all that are needed to reduce the construction of a

strictly subharmonic exhaustion function to point set topology (so the proof
is very elementary).

One pushes the bad set off to infinity (in the usual way) as follows. Given
a point p G M, there is a locally finite sequence of relatively compact domains

{Bv}%x with

p G B\ and Bv ft By+\ ^ 0 for v — 1,2, 3,...
Hence there exist nonempty disjoint open sets {Wv}^L0 such that p G Np

Wo CC B\ and Wv CC Bv D Bv+\ for v — 1,2,3,... and, as in the lemma,
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C°° bump functions {ov}^ such that, for each u 1,2,3,... we have

suppa^ C Bv, oiv > 0 and Xgau > 0 on Wv-\, and Agotv >0 on M \ Wu.
For constants 0 < r\ <C r2 r$ <C • • • we get a C°° subharmonic function

with supp ßp C Qp U^Li Bv and ßp > 0 and Agßp > 0 on the neighborhood
Np of p. Paracompactness implies that we can form a locally finite covering

{A^} of M by such sets and a corresponding locally finite collection {QPj}.
Thus, for Rj 0 for j 1,2,3,... we get a C°° strictly subharmonic
exhaustion function

In fact, the above arguments actually give the following analogue of Urysohn's
lemma :

Theorem 0.2 (cf. Theorem 1.13). Suppose U is a domain in a connected

noncompact Riemannian manifold M, C is a connected noncompact closed
subset of M with C C U, and p is a positive continuous function on M.
Then there exists a nonnegative C°° subharmonic function p on M such that

p 0 on M\U and p > p and Àgp > p on C.

Remark. The existence of such a set C c U is a necessary condition
(see the remarks following Theorem 1.13). In the terminology of [EM], U has

an exit to oo (relative to M).

A detailed proof of Theorem 0.1 (in fact, a proof of the existence of
an exhausting subsolution for a more general elliptic operator) appears in
Section 1. Some (mostly known) applications are described in Section 2. These

include the fact that the holomorphic line bundle associated to a nontrivial
effective divisor on a compact connected complex manifold X admits a C°°

Hermitian metric with positive scalar curvature (Theorem 2.3).

oo

oo

Acknowledgements. We would like to thank Professors Narasimhan
and Vust for helping improve the exposition of the paper.
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1. Construction of exhausting subsolutions

Throughout this section, M will denote a connected smooth manifold of
dimension n and A will denote a second order linear elliptic differential

operator with continuous coefficients. Thus, in local coordinates (jq,... ,jcw),

where ay for each i and j, bi for each /, and c are continuous real-
valued functions and (ay) is a symmetric matrix-valued function with positive
eigenvalues at each point.

Theorem 0.1 follows from the theorem below if we choose for A the

Laplacian Ag of a Riemannian metric g and, for p, a positive continuous
exhaustion function.

THEOREM 1.1. If M is noncompact and p is a positive continuous function
on M, then there exists a C°° function p on M such that <p > p and Ap > p.

The main step in the proof is the following:

PROPOSITION 1.2. Suppose K is a compact subset of M, U is a component
of M\K which is not relatively compact in M, and p G U. Then there exists

a C°° function a such that

(i) a > 0 and Aa > 0 on M,

(ii) supp oi C U,

(iii) a(p) > 0, and

(iv) Aa(p) > 0.

Remark. Theorem 1.1 also holds for a second order locally uniformly
elliptic linear differential operator A with locally bounded (not necessarily
continuous) coefficients. One applies the corresponding version of Proposition 1.2

in which the property (iv) is replaced with Aa > 1 on a neighborhood of p.
The generalizations considered in this paper (Theorem 1.10 and Theorem 1.13)
also hold for such an operator A.

The following equivalent version of Proposition 1.2 implies that a compact
set which is topologically Runge is convex with respect to functions a
satisfying Aa > 0 :
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Proposition 1.3. Let K be a compact subset of M whose complement
has no relatively compact components. Then, for each point p G M\K, there
is a C°° nonnegative function a on M such that Aa > 0 on M, a 0 on
K, a{p) > 0, and Aa(p) > 0.

Remark. If the coefficients are (for example) C1 and the constant term
c < 0 (for example, if A A^), then a nonconstant subsolution on a domain
cannot attain a positive maximum and, therefore, the converse will also hold.
That is, if such a function a exists for some point p G M\K, then the

component of M \ K containing p is not relatively compact.

Proposition 1.2 and Proposition 1.3 together with standard arguments in

Runge theory give Theorem 1.1. Proofs are provided for the convenience of
the reader. For this, we need two elementary observations (cf. Malgrange [M]
or Narasimhan [N]).

LEMMA 1.4. Let X be a noncompact, connected, locally connected, locally
compact, Hausdorff topological space. If K is a compact subset of X and K
is the union of K with all of the relatively compact components of X\K, then

K is compact, X\K has only finitely many components and each component
of X\K has noncompact closure.

Proof. We may assume without loss of generality that K / 0. Since X
is Hausdorff, K is closed and, since X is locally connected, the components
of X \ K are open. It follows that K is a closed set whose complement has

no relatively compact components (since X \ K is the union of components
of X \ K with noncompact closure).

Since X is locally compact Hausdorff, we may choose a relatively compact
neighborhood Q of K in X. The components of X\K are open and disjoint,
so only finitely many meet the compact set dQ C X \ K. By replacing Q

by the union of Q with all relatively compact components of X \ K meeting
<9Q, we may assume that no relatively compact component of X \ K meets

dQ. On the other hand, every component E of X \ K must satisfy

E n K dE / 0

For E is open and closed relative to X \ K, so dE c K, while E ^ X,
so dE E\E 0 (E cannot be both open and closed in the connected

space X). It follows that, if E meets X\Q, then E meets dQ and hence E
is not relatively compact in X. Thus
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X \ Q C Ei U • • • U Em

for finitely many components E\,..., Em of X \ K, none relatively compact
in X, and K c Q CC X. The claim now follows.

LEMMA 1.5. Let X be a second countable, noncompact, connected, locally
connected, locally compact, Hausdorff topological space. Then there is a

sequence of compact sets {K»}^ such that X — \J=1 Ku and, for each v,
° ^ ^Ku C Kv+1 and Kv — Kv, where Kv is defined as in Lemma 1.4.

Proof. We may choose a sequence of compact sets {Hv} such that
X Ur=i^- We set H\. Given Kv, we may choose a compact set

o

X'v^\ such that H„ U Kv C K'yJrl and set Kv+\ ^,+u This yields the
desired sequence.

Proof of Theorem 1.1. By Lemma 1.5, we may choose a sequence of
nonempty compact sets {K]y} such that M \J^={KU and, for each u,

o

Kv c Kjs+i and M\Klf has no relatively compact components. Set Kq 0.
Given p G M, there is a unique v v(p) with p G Kv+\ \ Ky and

we may apply Proposition 1.3 to get a C°° nonnegative function ap and a

relatively compact neighborhood Vp of p in M \ Kv such that Aap >0 on
M, OLp 0 on Kv, and ap > p and Ao^ > p on (one obtains the last
two conditions by multiplying by a sufficiently large positive constant). Thus
we may choose a sequence of points {pk} in M and corresponding functions
{otPk} and neighborhoods {VPk} so that {VPk} forms a locally finite covering
of M (for example, one may take {p{\ to be an enumeration of the countable

set U^Lo^f where, for each v, Zv is a finite set of points in M\KU such
o

that {Vp}pezu covers Ku+% \K„). The collection {suppa^} is then locally
finite in M since supp aPk c M \ Kv whenever pk Kv. Hence the sum

££i apk is locally finite and, therefore, convergent to a C°° function ip on
M satisfying p > aPk > p and Ap > AaPk > p on VPk for each k. Therefore,
since {VPk} covers M, we get p > p and Ap > p on M.

It remains to prove Proposition 1.2.

Lemma 1.6. Each point p G M has a relatively compact connected
neighborhood V such that, for each point q G V, there is a C°° nonnegative
function p on M such that p 0 on M\V, p > 0 on V, and q is the
unique critical point of p in V (hence p(q) maxp).
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Proof. We may assume without loss of generality that M is an open
subset of R", p is in the cube V (— 1,1) x • • • x (—1,1), and V CC M.
Let q (o\n.. .,a„) G V and, for each i l,...,w, fix a C°° function

À/ : R —y [0,oo) such that A, 0 on R\ (—1,1), A/ > 0 on (—1,1), and

is the unique critical point of A; in (—1,1); for example, the function

AKO

if \t\ > 1.

The function p given by

n

i=l

then has the required properties. Q

Lemma 1.7. Let p: M ^ (r,s) C R be a C2 function, let K be a

compact subset of M which does not contain any critical points for p, and let

X' (r, s) -A R be a C2 function satisfying \" > |x'l and x" > | XI - Then, for
every e and R with 1 e > 0 and R 0, we have A[x(Rp)] > eR2,x"(Rp)

on K.

Proof Locally, we have

- V- 02 V-, 0^ Qij
dxidxj

^ ^ ' dxi
ij= 1 7 i'=4

(with atj — aß). Hence, for /? > 0, we have

+ ÄX'(ÄyO Ed^p j dp
cx(Ä^) •

^j

Since A is elliptic with continuous coefficients and dp 0 at each point in

the compact set /if, it follows that there exist constants (5 > 0 and X > 0

(which do not depend on R) such that, at each point in K,
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A[x(Rv)} > R25x"(Rv) - R\x'(Rv)\N-> X"(R<p)(6R2

We have SR2— RN —N>eR2 for ^ 50 and Ä » 0, so the claim
follows.

Lemma 1.8. There exists a C°° function X- R ->R such that

(i) x(0 0 for t < 0, and

(ii) x"(0 > x'(t) > x(0 > 0 for t> 0.

Proof For example, if a, b > 1, then the C°° function

satisfies (i) and (ii). O

Lemmas 1.6-1.8 allow one to produce bump functions which are subsolutions

outside a small set. To push the bad set off to infinity, we require chains
of such bump functions. For this, we recall an elementary fact from point set

topology. It is convenient and instructive to have this fact in a form which is

slightly stronger than is needed at present.

Lemma 1.9. Let X be a connected, locally connected, locally compact,
Hausdorff topological space, let B be a countable collection of connected

open subsets which is a basis for the topology in X, and let U be a connected

open subset which is not relatively compact in X. Suppose that there exists a
connected noncompact closed subset of X which is contained in U. Then

(i) for any connected noncompact closed subset C of X with C C U, there
exists a sequence of connected open subsets {Uv} of X such that C C U\,
U U^Li > and, for each v, Uv is noncompact and Uv C Uu+\ ; and

(ii) for each point p G U, there exists a sequence of basis elements
which tend to infinity (i.e. {Bf\ is a locally finite family in X) such that

p G B\ and, for each j, Bj CC U and Bj H Bj+ \ / 0.
If, in addition, X is locally path connected, then

(iii) for each point p G U, there is a proper continuous map 7 : [0, 00) -A X
with 7(0) —p and 7([0, 00)) C U (i.e. a path in U from p to 00

X(t) { exp(af " if t > 0

if t < 0

Remark. Conversely, each of the properties (ii) and (iii) clearly implies
the existence of a connected noncompact closed subset of X which is contained
in U.
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Proof. We first observe that there is a sequence of connected open subsets

{£2^} of U such that U U^=i ^ and, for each v, CC For we

may choose a covering of U by a sequence of basis elements {Gj} which are

relatively compact in U. For each v, let T^ be the connected component of
Gi U • • - UG^ containing Gi. Then T (J Tv is equal to U. For if p G TP £/,
then p G Gj for some j and Gj must meet Fp for some p. Therefore, for

v > max(/, /i), Gj U TM is a connected subset of Gi U • • * U Gv containing Gi
and hence

p G Gj C Tv C T.

Thus r is both open and closed relative to U and is therefore equal to U.

A suitable subsequence of {F^} (chosen inductively) will then have each

term relatively compact in the next term, as required. We may also choose

a sequence of open subsets {©i,} such that X — U^Li and> f°r eac^ v >

B„ CC ©!/+i. Set £20 ©o ©-1 0.
Next, we observe that, for any set C as in (i), there is a countable locally

finite (in X) covering Ac of C by basis elements which are relatively compact
in U. For we may take Ac U^Li where, for each v — 1,2, 3,...
A^ is a finite covering of the compact set C n (©„ \ ©„ _ i by basis elements

which are relatively compact in U\BU-2-

For the proof of (i), we may choose the sequence {Q„} so that QiClC 7^ 0.
Let Co C and Q0 Co 0. Given connected open sets Co,, Uv and

connected closed sets Co,..., Cv such that, for pi — 1,..., 1/, we have

U CM_ 1 C Uf, C CM C C

(which holds vacuously if z/ 0), we may choose Uu+\ to be the union

of those elements of the collection Aq uc which meet the connected

noncompact closed set U Cv and set Cu+\ — Uu+ Proceeding, we

get a sequence {Uy} with the required properties.

For the proof of (ii), we may fix a connected noncompact closed subset

C of X with p G C C U (for this, we may take {Uv} as in (i) and let

C Üv for some v > 0). For each point q G C, there is a finite sequence

of elements B\,..., of Ac which forms a chain from p to q\ that is,

p G B\, q G Bk, and Bj n Bj+\ 7^ 0 for j — 1,..., k - 1 (we will call k the

length of the chain). For the set E of points q in C for which there is a

chain from p to q is clearly nonempty and open relative to C. On the other

hand, E is also closed because, if q G Ë, then q G B for some set B G Ac
and there must be some point r G B D E. A chain B\,..,, Bk from p to r
yields the chain B\,... ,Bk,B from p to q. Thus E — C. Observe that if
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q G E and B\,.. .,Bk is a chain of minimal length from p to q, then the

sets B\,...,Bk are distinct.

Now since C is noncompact and closed, we may choose a sequence of

points {q„} in C with qv -A oo in X (for example, qv G C\Qiy for each v)
and, for each v, we may choose a chain B^ of minimal length

from p to qv. Since the elements of Ac are relatively compact in U and

Ac is locally finite in X, there are only finitely many possible choices for

Bjv) for each j (only finitely many elements of Ac will be in some chain

of length j from p). Moreover, for each fixed je N, we have kv > j for

v 0, because the set of points in C joined to p by a chain of length < j is

relatively compact in C while qv ^ oo. Therefore, after applying a diagonal

argument and passing to the associated subsequence of {q„}, we may assume

that, for each y, there is an element Bj e Ac with BjU) Bj for all v > 0.

Thus we get an infinite chain of distinct elements {Bj} from p to infinity as

required in (ii) (local finiteness in X is guaranteed since Ac is locally finite

and the elements {Bj} are distinct).

Finally, suppose X is locally path connected. Then the sets {Bj} as in (ii)
are path connected and, setting po p and, choosing pj G BjC\Bj+ j for each

j — 1, 2, 3,... we may take x\\j-\ j\ to be a path in Bj from p,- \ to pj for
each j. O

Proof of Proposition 1.2. We first observe that, if V is a set with the

properties described in Lemma 1.6, D is a compact subset of V, and W

is a nonempty open subset of V \ D, then there is a nonnegative C°°

function ß with compact support in V such that Aß > 0 on M \ W

and ß > 0 and Aß > 1 on D. For we may choose a point q G W,

a C°° nonnegative function p on M which is positive on V and has unique

critical point q in V, a C°° function % on R as in Lemma 1.8, and a

constant e > 0 with p > e on D. By Lemma 1.7 (applied to the compact
set ^ {i G M \ ^ I p(x) > e} c V \ W), for R > 0, the function

ß x(R(P ~ 0) will have the required properties.

Next, by Lemma 1.9, given a point p e U, there is a locally finite (in X)
sequence of relatively compact open subsets {Vm} of U such that p G V\ and,

for each m, Vm has the properties described in Lemma 1.6 and Vmr)Vm+\ 0.
Hence we may choose a sequence of disjoint nonempty open sets {Wm}^=0
such that p e Wo CC V\ and, for each m > 1, Wm CC Vm fl Vm+\ •

By the first observation, there is a sequence of nonnegative C°° functions

{ßm}mLi such that, for each m, ßm is compactly supported in Vm, Aßm > 0
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on M \ Wm, and ßm > 0 and Aßm > 1 on Wm-\. We will choose positive
constants {Rm} inductively so that, for each m — 1,2,3,...

Let R\ > 1. Given R\,... 1Rm_\ > 0 with the above property, using the fact
that Aßm > 1 on Wm_i, we get, for Rm > 0,

On Wo, the above middle expression, and hence the expression on the left,
is greater than 1. Proceeding, we get the sequence The sum ^Rmßm
is locally finite in X and the sequence of sets {Wm} is locally finite in X,
so the sum converges to a function a with the required properties.

A slight modification of the proof of Theorem 1.1 gives the following
more general version:

THEOREM 1.10. Suppose K is a compact subset of M whose complement

M\K has no relatively compact components, p is a positive continuous
function on M, and W is a neighborhood of K in M. Then there exists a
C°° function p on M such that

(i) (p > 0 and Ap > 0 on M,

(ii) p > p and Ap > p on M\W,
(iii) p 0 on K, and

(iv) p > 0 and Ap >0 on M\K.

Proof We proceed as in the proof of Theorem 1.1 but now with Kq — K.
By Lemma 1.5, we may choose nonempty compact sets {Kv} such that

M 1X11 and such that, for each v 0,1, 2,... we have Ku C Kv+\
and M\KV has no relatively compact components.

on M \ Wm

on Wo.

./—1

On M\ (Wm-1 U Wm) we have Aßm > 0 and hence
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Given a point p G M\K, there is a unique v — v(p) > 0 with p G KU+\\KU
and, by Proposition 1.3, there is a C°° nonnegative function ap and a relatively

compact neighborhood Vp of p in M\KV such that Aap >0 on M, ap 0

on Ky, and ap > p and Aap > p on Vp. Thus we may choose a sequence of
points {pk] in M\K and corresponding functions {aPk} and neighborhoods

{VPk} so that {VPk} forms a covering of M \ W which is locally finite in M
(as in the proof of Theorem 1.1, one may take {pjf\ to be an enumeration

o

of where, for each v, Zv is a finite set of points in M\(W U Kv)
o

such that {Vp}pezv covers Kv+\ \ (W U Kv)). The collection {suppaPk} is

then locally finite in M and the locally finite sum YlkLi aPk converges to a

C°° function ip on M satisfying ip > aPk and Aip > AaPk for each k. It
follows that ip > 0 and Aip >0 on M, ip 0 on K Kq, and ip > p and

Aip > p on M\W.
To obtain the properties (iv), we choose a sequence of points {qm} in M\K

and corresponding functions {aqm} and neighborhoods {Vqm} so that {Vqm}

covers W\K. Applying a diagonal argument, we may choose a sequence of
positive numbers {em} converging to 0 so fast that each derivative of arbitrary
order for the sequence of partial sums of em&qm converges uniformly on

compact subsets of M. The function <p ip + J] will then have the

required properties.

The main topological fact required in the proof of Proposition 1.2 was

part (ii) of Lemma 1.9. This fact is slightly easier to verify for U a component
of the complement of a compact set. But the more general version (as stated

in Lemma 1.9) and the proof of Proposition 1.2 actually yield the following:

Proposition 1.11. Let U be a connected open subset of M which contains

a connected noncompact closed subset of M. Then, for each point p G U,
there exists a C°° function a such that

(i) a > 0 and Aa > 0 on M,
(ii) supp öl C U,

(iii) a(p) > 0, and

(iv) Aa(p) > 0.

Proposition 1.12. Let K be a closed subset of M such that each

component of M\K contains a connected noncompact closed subset of M.
Then, for each point p G M\K, there is a C°° nonnegative function a on

M such that Aa > 0 on M, a 0 on K, a(p) > 0, and Aa(p) > 0.
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We also get a corresponding generalization of Theorem 1.10:

Theorem 1.13. Suppose K is a closed subset of M such that each

component of M\K contains a connected noncompact closed subset of M
and D C M\K is a closed subset of M with no compact components. Then,

for every positive continuous real-valued function p on M, there is a C°°

function p such that

(i) <p > 0 and Ap > 0 on M,
(ii) p > p and Ap > p on D,

(iii) p 0 on K, and

(iv) p > 0 and Ap >0 on M\K.

Before addressing the proof, we consider some remarks.

Remarks. 1. If the coefficients of A are (for example) C1 and the

constant term is nonpositive, then the existence of a connected noncompact
closed subset C of M with C C U is necessary in Proposition 1.11. In fact, if
U is a connected open subset of M and M admits a nonconstant nonnegative
upper semi-continuous subsolution a which vanishes on M\U, then U must
contain such a set. For a(p) > 0 at some point p E U and hence we may
choose a number e with 0 < e < a(p) and a neighborhood V of the closed
set {x e M I a(x) > e} with V C U. The maximum principle then implies
that the component W of V containing p is not relatively compact in M.
Thus the set C W is a closed connected noncompact subset of M contained
in U.

In particular, as the following example illustrates,, the conclusions of
Proposition 1.2 and Proposition 1.3 do not hold in general for K a closed

noncompact set.

Example 1.14. Let K be the closed subset of the manifold M
R2 \ {(0,0)} given by

oo

K —(M\(0,2)x (0,2)) U (J {1/m} x [0,1].
m~ 1

Then the complement U M\K is connected and U is noncompact. But U
does not contain a connected noncompact closed subset of M and, therefore,

every nonnegative upper semi-continuous subharmonic function p on M which
vanishes on K must vanish everywhere in M.
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2. As the following example shows, the conclusion of Theorem 1.13 may
fail to hold if the set D C M\K has compact components.

Example 1.15. The complement U M\K in M — R2 \ {(0,1)} of
the closed set

oo

K (M\(0,oo) x (0,4)) U (J {l/(2m)| x [0,2]
ra= 1

is a connected set with noncompact closure and U contains the closed

noncompact connected set C - [l,oo) x {3}. The noncompact subset

D {(l/(2ra + 1), 1) I m G N}

of U is closed (in fact, discrete) in M. If p is a nonnegative upper semi-

continuous subharmonic function on M which vanishes on K, then, for each m,
applying the maximum principle in [l/(2m + 2), l/(2m)] x [0,2], we get a

number {rm} with l/(2m+2) < rm < l/(2m) and p(rmi 2) > p(l/(2m+l), 1).
Since (rm, 2) -> (0, 2) G K C M and p is upper semi-continuous, it follows
that p must be bounded on D.

3. If K C M is a compact set, then one can achieve the conditions in
Proposition 1.3 and Theorem 1.10 by replacing K by the compact set K.
Because we have Proposition 1.12 and Theorem 1.13, for a general closed set

K C M it is natural to define K to be the union of K with all components of

M\K which do not contain any connected noncompact closed subsets of M.
The main step in the proof of Theorem 1.13 is the case in which D and

M\K are connected.

LEMMA 1.16. Suppose U is a connected open subset of M, C is a
connected noncompact closed subset of M with C C U, and p is a positive
continuous function on M. Then there is a C°° function p such that

(i) p > 0 and Ap > 0 on M,
(ii) p > p and Ap > p on C,

(iii) p 0 on M\U, and

(iv) p > 0 and Ap >0 on U.

Proof We first show that there is a nonnegative C°° function ^ such

that Af> >0 on M, ijj 0 on M\U, and ip > p and Aifj > p on C.
For this purpose, we may assume without loss of generality that C is

locally connected. For we may choose (as in the proof of Lemma 1.9) a
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locally finite (in M) covering A of C by relatively compact connected open
subsets of U. We may also choose the covering so that each element meets
C and has locally connected closure (for example, we may choose A so

that, for each B G A, there is a diffeomorphism of some neighborhood of B
onto an open subset of R" mapping B onto a ball). The closed connected

noncompact set

C' (J 5 (J

is then locally connected. For if p G C' and B\,..., Bk are the (finitely many)
elements of A whose closures contain p, then, for each j 1 we may
choose a neighborhood Wj of p in M such that Wj n Bj is connected and

WjnB=0 for each set BG A \{ßi,...,Bk }. The set |J/ »V 1 «/
is then a connected subset of C' which contains the set ^n-'-nW^nC', a

neighborhood of p relative to C'. It follows that C is locally connected (since,
by choosing the neighborhoods {Wj} small, one sees that the components of
any open subset of C are open relative to C). Therefore, by replacing C

with the set C", we may assume that C is locally connected.

By Lemma 1.4, there is a sequence of compact sets {Kv} such that
o

M and, for each v, we have Kv C Kv+\ and C\KV has only
finitely many components, all of which have noncompact closure. For we

may choose inductively a sequence of compact subsets {K'v} of M such that

M — K'v and such that, for each v, we have

KV K'V U (KfVC)c c K'u+1 ;

where, for K c C compact, Kç is the union of K with all of the relatively
compact components of C\K.

We now proceed as in the proofs of Theorem 1.1 and Theorem 1.10. Let
Kq — 0. Given p e C, there is a unique v — u(p) with p G Ku+1 \ Kv.
The component Up of U \ Ku containing p must also contain the closure

o

of some component of C\KV+\ C C \ c C\KV. For we may take a

point q in the component of C\KV containing p (a set with noncompact
closure) which lies outside K„+\. The closure of the component of C\KV+1
containing q is then contained in Up. We may apply Proposition 1.11 to get a

C°° nonnegative function ap and a relatively compact neighborhood Vp of p
in Up such that Aap >0 on M, supp ap C Up, and ap > p and Aap > p on

Vp. Thus we may choose a sequence of points {pk} in C and corresponding
functions {aPk} and neighborhoods {VPk} so that {VPk} forms a locally finite
(in M) covering of C. The collection {suppa:^} is then locally finite in M
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because suppa^ C U\KV whenever pk^Kv. Hence the sum J2kL\ aPk

locally finite and, therefore, convergent to a C°° function ^ on M with the

required properties.
Now, by Lemma 1.9, there is a sequence of connected open sets {Uv} such

that U U^i Uv * C C U\, and, for each v, Uv C Uv+\ By the above, we

may form a C°° nonnegative function iß such that Aiß > 0 on M, iß 0 on

M\ C/i, and iß > p and Aiß > p on C and, for each v — 1,2,3,... we may
form a C°° nonnegative function xßv such that Aiß» >0 on M, ^ 0 on

M\L^+i, and ißv > \ and Aip# > 1 on Uv. Choosing a sequence of positive
numbers {ev} converging to 0 sufficiently fast, the function p iß + ^euißu
will have the required properties.

For the general case, we will apply the following :

Lemma 1.17. Suppose X is a second countable, connected, locally
connected, locally compact, Hausdorff topological space ; K is a closed subset

of X ; and D C X\K is a closed subset of X with no compact components.
Then there exists a countable locally finite (in X) family of disjoint connected

noncompact closed sets {Ca}aga and a locally finite (in X) family of disjoint
connected open sets {U\}\eA such that

OcC=(Jca andCxCUxCLjxCX\K VA G A.
A G A

Remark. We will not use the fact that the sets {U\} are disjoint.

Proof As in the proof of Lemma 1.9, there is a countable locally finite
covering Ad of D by connected open relatively compact subsets of X \ K
which meet D. Thus

DC V (J B C V —(J B CX\K

(where we have used the local finiteness of the collection AD). Since each of
the components of V meets, and therefore contains, a component of D, the

family of components {Vr7}7F of V is a locally finite family of connected

open sets with noncompact closure. The set

c^v=\Jvy
7^r

is a closed set contained in X \ K and the family of components {Ca}aga
of C satisfies
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CA= U y7= U VAGA.
7^r 7GF

ë7CCa V7CCa

It follows that the family is locally finite in X (since the family {V7}7Gr is

locally finite) and that C\ is closed for each À G A. Consequently, we may
choose a locally finite covering Ac of C by connected relatively compact

open subsets of X \ K such that, for each element B G Ac, B and B meet

exactly one component of C. For each À G A, taking U\ to be the component
of the set

U B\ U B

BGAc BGAC
BnCxA0 Bncx=0

containing Ca, we get disjoint connected open sets {Ca}aga with

CA c Ca C Ux cX\K
for each À G A. This family is locally finite in X. For each point in X has a

neighborhood Q which meets only finitely many elements B\,..., B^ of Ac •

Each Bj meets a unique component CXj of C. If À G A with Q D Ca / 0,
then QHB ^ 0 for some B G Ac with B D Cx ^ 0. Hence we must have

B Bj for some j and, therefore, A Ay.

Proof of Theorem 1.13. Let

D G C(J C\ and CA c UxVA G A
À G A

be as in Lemma 1.17. Applying Lemma 1.16 to each pair of sets Cx C Ca,
we get a nonnegative C°° function ax such that Aax >0 on M, a;a 0 on

M\ Ca, and ax > p and Aax > p on Ca (we do not need the properties (iv)
of Lemma 1.16 for this part). Since the family {Ca} is locally finite in M,
the sum ax determines a nonnegative C°° function a with Aa > 0 on

M, a 0 on M\ Uaga 3 K, and a > p and Aa > p on C D D.

Applying Lemma 1.16 to each of the components {Vy}-eJ of M\K, we

get, for each j G J, a C°° nonnegative function ßj such that Aßj >0 on M,
ßj 0 on M\Vj, and ßj > 0 and Aßj > 0 on Vy. For J a finite set, we

may now take ip a ßj. If J is infinite, then, assuming as we may
that J — N and choosing a sequence of positive numbers {ey} converging
to 0 sufficiently fast, the function tp a + Yljli ejßj will have the required

properties.
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We close this section with the following observation concerning Theorem

1.10 for K the closure of a smooth relatively compact domain.

COROLLARY 1.18. Suppose Q is a C°° relatively compact domain in M
whose complement M \ Q has no compact components, p is a positive
continuous function on M, and W is a neighborhood of £2. Then there

is a C°° function p on M such that p > p on M\W, Ap > p on M, 0 is

a regular value for p, and Q {x E M \ p(x) < 0 }.

Proof There exists a C°° function r on M such that 0 is a regular
value for r, r is locally constant on M\V for some relatively compact
neighborhood V of dQ in W, and Q {x G M \ r(x) < 0}. For e > 0

sufficiently small, we have

D m { x G M I —2e < r(x) < 2e } C V

and (dr)x / 0 for each point x G D. By Theorem 1.1, there is a C°°

function a with compact support in Q such that a < 0 on M and Aa > p
on {x G M I t(x) < —e}. By Theorem 1.10, there is a C°° nonnegative
function ß on M such that Aß > 0 on M, ß 0 on Q, ß > 0 and Aß > 0

on M \ Q, and ß > p and Aß > 1 + p on {x G M \ r(x) > e }. Finally, we

may fix a C°° function R —[0, oo) as in Lemma 1.8. Let Ri,R2,R3 > 1

and let

ip a +R2x{R\(t + 2e)) - R2xC-Rié) + /?3/? •

On M\W, we have p > > /? > p.OnQ, we have

p<0+ ß2x(tfi(0 + 2e)) - Rix(2R\t) • 0 0.

On M \ Q, we have

P>o + ^2x(^i(0 + 2e)) - R+ > 0.

Thus Q { x G M I p(x) < 0 }. For any point v G dQ { x G M \ p{x) 0 },
we have a — 0 near x and ß has a local minimum at x. Thus

dp da + R\R2x'{2R\(fdr + R2dß 0 + R\R2x'(2R\e)dr + 0^0.
By Lemma 1.7, for Ri > 0, we get A[x(R\(t + 2e))] > 0 on

QUD {x G M I t(x) < 2e} and A[x(R\(t + 2e))] >0 on {x G M \

—2e < t(x) < 2e } C D. On {x G M \ r(x) < — e } we have

Ap > Aa + 0 + 0 Aa > p.
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For 7?2 0, on {x G M \ — e < r(x) < e } we have

Aip > Aa + R2A[x(R\(t + 2e))] > p

Finally, since r is locally constant on M\V, for R3 > 0, on {x e M \

t(x) > e} C M\Q we have

AV 0+R2A[X(Rl(T+2e))]+R3Aß > *2A[x(*i(r+2e))]+/?3(l

2. TWO APPLICATIONS

To illustrate the broad utility of the existence of exhausting strict subsolutions,

we consider two (mostly known) consequences.
We first recall that any Ck function on a smcoth manifold can be

approximated in the Ck Whitney topology by a C°° Morse function ^
[GoG]. Applying this to a function (p from Theorem 1.1, we get

Corollary 2.1. If M and A are as in Section 1 with M noncompact
and p is a positive continuous function on M, then there exists a C°° Morse

function f satisfying f > p and Aip > p.

Taking A to be Ag for a Riemannian metric g and p to be a continuous
exhaustion function, we get a Morse exhaustion function ip with Agip > 0.
Since Agip is the trace of the Hessian of with respect to g, the Hessian

has at least one positive eigenvalue at each point, so the index of tp is at

most n — 1. Thus we get the following well-known fact :

Theorem 2.2. A connected noncompact C°° manifold of dimension n
has the homotopy type of a CW complex with cells of dimension < n — 1.

The next observation is that the existence of exhausting strict subsolutions

allows one to construct a Hermitian metric of positive scalar curvature (positive
curvature in the case of a Riemann surface) in a holomorphic line bundle with
a nontrivial holomorphic section.
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For the rest of this section, X will denote a connected complex manifold
of (complex) dimension n and g will denote a C°° Hermitian metric in X.
The Levi form of a C2 function p on X is the Hermitian tensor given by, in
local holomorphic coordinates (z\,.. » * zn) »

92p

1 J

The Laplace operator Ag for the Hermitian metric g is given by the trace of
the Levi form:

d2
A £siJ

dzidzj

where (glj) (^j) 1. This elliptic operator is equal to 1/2 the Laplace

operator of the associated Riemannian metric if g is Kähler. A C2 real-

valued function p is called subharmonic (strictly subharmonic) with respect
to g if Agp > 0 (respectively, Agp > 0).

If L is a holomorphic line bundle on X and h is a C2 Hermitian metric
in L, then the curvature of h is the Hermitian tensor 0^ given by

&h C(-log|i|^)

for any nonvanishing local holomorphic section s of L. The scalar curvature

IZh of h with respect to g is given by the trace of the curvature; that

is, locally,
7 ZhA5(— log

In particular, if X is a Riemann surface, then IZh — ®h/g-

Theorem 2.3. Let L be a holomorphic line bundle on X. If X is

noncompact or L [D] is the holomorphic line bundle associated to a

nontrivial effective divisor D in X (i.e. L is a holomorphic line bundle
which admits a nontrivial global holomorphic section), then L admits a C°°

Hermitian metric h with positive scalar curvature.

Proof. Fix a C°° Hermitian metric k in L. We will modify k to obtain h.

Assuming first that X is noncompact, Theorem 1.1 provides a C°° strictly
subharmonic (with respect to g) exhaustion function p. If % is a C°° function
on R with x' > 0 and x" > 0 and

h-e-x^k.
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then

T^h Ap(x(y?)) + Hk > x'(¥)kg¥ + Ttk •

Choosing x so that x'(0 ~^ °° sufficiently fast as t — oo, we get 7*^ >0.
Assuming now that X is compact and L [D], where £) is a nontrivial

effective divisor, let Y \D\ C X be the support of D and let s be a global
holomorphic section of L with associated divisor D. Applying Theorem 1.1

to a noncompact neighborhood of Y in X and cutting off, we get a C°°

function ce on A which is strictly subharmonic on a neighborhood U of Y.
After shrinking U slightly and replacing ce by a large multiple, we may
assume that

Aga + IZk > 2 on U

Since — log \s\l -A oo at Y, we have, for N 0,

YC {xeXI n(.v) - log

(setting ce — log 1^ oo along Y). We may choose a C°° function À on R
such that X' > 0, À" > 0, \{t) t if t > 3N, and A(/) 2A if t < N. We

set A(oo) oo. The restriction of the function

pm \(a-log\s\2k)

to X \ Y is C°° and subharmonic because p 2N on a neighborhood of
X\U (and hence Agp 0), while on U\Y we have

Agp=A'(a-log|sß) • (Aga + nk)+\"(a-\og\s\l) |<9(a - log\s\2k)\2g

> 2A '(a-log |s|^) > 0.

Observe also that p ce — log on the relatively compact neighborhood V
of Y in U given by

V {x eXIa(x)-log j.v(.v)^ > 3N

Applying Theorem 1.1 to the connected noncompact manifold X \ Y and

cutting off near F, we get a C°° function ß with compact support in X \ Y

satisfying Agß > 0 on X\V. Choosing c > 0 so small that cAgß > — 1 on
X, we see that the restriction of the function 7 p + eß to X \ Y is C°°
and strictly subharmonic. In fact, on V \ F, we have

A97 - A g(a-log |s|^ + 2 - 1 - 1.
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We may now define |£|^ for £ G Lx with x G X by

jV7Cx)|£AW|2 ifxex\Y,
h if xev.

Then h is a well-defined C°° Hermitian metric in L since, for x e V\Y and
£ G Lx, we have

e~7W|£/s(.*)|2 (Q(j:)-log I s(x)\l+eß(x))I^1I12e-aW-e/3W|^|2

Furthermore, on X \ Y we have

1? a i I |2a a / > 0 onI\7^ Ap(-log|4)
> 1 on V \ Y

By continuity, we also have 1Zh > 1 > 0 at points in T. Thus 7Zh > 0

on X.

For X a Riemann surface, the above proofs become especially simple.
For example, the construction of a in the proof of Theorem 2.3 is trivial
for dimX 1 because Y is discrete. For X an open Riemann surface,
Theorem 0.1 provides a C°° strictly plurisubharmonic exhaustion function
and, therefore, by [Gr] and [DG], one gets the theorem of [BS] that an open
Riemann surface is Stein. For a compact Riemann surface X, Theorem 2.3
becomes the familiar fact (see, for example, [GriH]) that the holomorphic line
bundle associated to a nontrivial effective divisor admits a C°° Hermitian
metric h with positive curvature 0/?.
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