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LIOUVILLE'S THEOREM REVISITED

by Ruy TOJEIRO

ABSTRACT. Liouville's theorem turns out to be equivalent to a rigidity theorem for
isometric immersions of open subsets of Euclidean space of dimension n > 3 into the

light cone of Minkowski space of dimension (n + 2). We give a short direct proof of
this theorem, thus yielding a simple new proof of Liouville's theorem. Understanding
where things go wrong in the case n 2 leads to an interesting characterization of
the complex exponential function

1. Introduction

A fundamental result in conformai geometry is the following well-known
theorem of Liouville [Li] :

Theorem 1. Let f : U ~t R" be a conformai map defined on a connected

open subset of Euclidean space R" of dimension n > 3. Then f — L\u is the

restriction to U of a similarity or the composition f — I oL\u of such a map
with an inversion with respect to a sphere of unit radius.

The importance of Liouville's theorem may be measured, if not by its

strong implications in conformai geometry, by the number of proofs available

in the literature; see e.g. [H-J], [Ja], [Ku], [Ma], [Ne], [Sp] and [Fr]. Most of
them, including the one for n — 3 known as the "classical" proof, split into
two parts, in the first of which one proves that a conformai map in dimension

n > 3 has the property that (pieces of) spheres and affine subspaces are carried
into (pieces of) spheres or affine subspaces. The proof is then completed by a

lemma due to Möbius, according to which this property implies the conclusion
of the theorem; see e.g. [Sp], Vol. Ill, p. 310.
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In this article we use a different approach to Liouville's theorem, based

on the fact that conformai maps on open subsets of R" are in correspondence
with isometric immersions of these subsets into the the light cone of
(n 4~ 2)-dimensional Minkowski space. We provide an elementary account
of this correspondence and establish the equivalence of Liouville's theorem
and a rigidity theorem for such isometric immersions (see Theorem 5 below).
Then we give a short direct proof of this theorem. Besides yielding a simple

proof of Liouville's theorem, some of the underlying ideas have shown good

potential for generalizations; for instance, they have recently been used in

[Toi] and [T02] to study conformai immersions into Euclidean space of
Riemannian and warped products of Riemannian manifolds.

We have included a section where we discuss R. Nevanlinna's proof of
Liouville's theorem [Ne] in the light of the ideas developed in this article.

Understanding where things go wrong in the case n — 2 leads to the

following interesting characterization of the complex exponential function:

Theorem 2. Let f : U R2 be a conformai map defined on the connected

open subset U c R2. Assume that one family of coordinate curves is mapped
by f into a family of (pieces of) circles or straight lines. Then there exist

an inversion I with respect to a circle of unit radius, a similarity L and a
composition H of a dilation, a translation and reflections in the coordinate

axes and the line y — x, such that f — I o Lo expoH\u, or else f is such

a composition with possibly some of its components replaced by the identity

map.

Acknowledgements. We are grateful to the referee for his careful

reading of the manuscript as well as for several useful and appropriate
comments and remarks. We also would like to acknowledge our indebtedness

to the referee of our paper [Toi], some of whose suggestions have also been

useful here.

2. CONFORMAL GEOMETRY IN THE LIGHT CONE

If RB+2 is endowed with a Lorentz scalar product

((v,w)) —vowo + v\w\ + • •

for v — (vo> }Vn+i) and fti. (mo, • • • ,wn+i), then it becomes the

(n ~f 2)-dimensional Minkowski space, and is denoted by LB+2. A vector



LIOUVILLE'S THEOREM REVISITED 69

v Ln+2 is said to be space-like, light-like or time-like according as

{{-lyi')) > 0, {{-iyi/)) — 0 or {{v.v)) < 0, respectively. The same terminology
is used for a subspace V c Ln+2, depending on whether the restriction of
{{ }) to V is positive-definite, degenerate (i.e., VT"! ^ {0}) or Lorentzian,

respectively. The set of light-like vectors

VB+1 ={p Ln+2: ((p,p)}0}
is called the light cone of LB+2. The intersection

En - E* VB+1 : «/>, w)) - 1}

of VB+1 with the affine hyperplane ((p-. w)} — 1 is a model of «-dimensional
Euclidean space for any w Vn+1. Namely, fix po e E" and a linear isometry
A: RB {pQ.w}^. Then the map W — WPo.mj>a- R" — EB c L'1+2 given by

i R" po t A(x) — g \x\2 ui-

is an isometry, as follows by computing

(1) dW(x)X - MX) - {X,x)w for all xtX e RB

We call (po, w.A) an admissible triple. Notice that if (po.w.A) and (pQ, w.Â)
are admissible triples, then the linear map given by T(po) — po, T(w) ~ w
and T o A — Ä is in Oi(« + 2), that is, is orthogonal with respect to {{,
and satisfies T o - ^0,î5,Â-

We also obtain from (1) that the normal space lyMp of at any x RB,

as an isometric immersion into LB+2, is the time-like plane spanned by *P(x)
and w. Moreover, denoting by V and V the usual derivatives in RB and
LA"!""2, respectively, we obtain

(2) VYdW(X) - dW VYX + XycTY(X), w))ft VydM(X)-..

d*¥VYX — {X, Y)w,

hence the second fundamental form a.p : TM x TM TipM of *P is given

by

(3) a«p(X, Y) : VydW(X) - XyX (X, Y)w

Here, and throughout the paper, we use the abuse of notation of also denoting
by V the pulled-back connection on the pulled-back bundle *P* TLn+2, that

is, V will also denote the induced derivative of vector fields in LB+2 "along
W" (that is, sections of ¥* TUl+2 with respect to vector fields in M.



70 R. TOJHRO

2.1 The space of spheres

Hyperspheres in Euclidean space RB have a neat description in its model E"
(see e.g. [Be], Chapter 20, Vol. 2): let S c R" be a hypersphere with
(constant) mean curvature h with respect to a unit normal vector field n.
Differentiating the map p: S ~¥ LB+2 given by p(x) — dW(x)n(x) + hW'ix) and

using (2) we get

dp(X) - dWVxn + hdx¥(X) - dW(-hX) + hdW(X) - 0,

hence p is a constant unit space-like vector v LB+2 with {(lP(V), vj) 0

for all x S. It follows that ¥(5) — E" fl {p}1" and from now on we write

simply TTS) — S. Observe that S — En O is an affine hyperplane iff
0 — h — {{-i',-«.')). Notice that changing the unit normal vector field « by a sign,
and hence the corresponding mean curvature h, also makes the unit space-like
vector v to change its sign. Thus, unit space-like vectors in Ln+2 are in
one-to-one correspondence with oriented hyperspheres or affine hyperplanes
of RH, hence the space of oriented hyperspheres and affine hyperplanes of
R» is naturally identified in this way with de Sitter space S"+1 of all unit

space-like vectors of Ln+2.

The relative position of two hyperspheres has a simple description in this
model: given hyperspheres or affine subspaces S, EB n [vi}L, 1 <i<2,
then they intersect transversally, have a unique common point (or are two

parallel affine hyperplanes) or do not intersect iff the subspace spanned by

v\ and V2 is space-like, degenerate or time-like, respectively. In the first

case, if n\ and n2 are the unit normal vectors of Si and S2, respectively,
at x S\ nS2, then (n\, n2) {{-i!is-i^}} • In particular, Si and S2 intersect

orthogonally iff {(i-'i. vXj) — 0.

Let S — EB fl {•?,'}"" be a hypersphere with (Euclidean) center xç,

and radius r, oriented by its inward pointing unit normal vector field
n(x) (xç> ~~x)/r, with corresponding mean curvature h — 1 jr. Using (1), we
obtain that v — dWU)n(x) + h^ix), x S, is given by

(4) v~lw(x0)~t^w.
r 2

In particular, if T — (Sà)aa is a family of concentric hyperspheres and
Sx — Enn {vx}- for unit space-like vectors vx, then the subspace Vj- c LB+2

spanned by all vx is a two-dimensional time-like subspace spanned by the

light-like vectors w and W(ao) EB, where xo is the common center of all Sx.

Conversely, if T is a family of hyperspheres whose associated subspace V:p

is a two-dimensional time-like subspace containing w, then T is a family of
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concentric hyperspheres whose common center is the point xo Rn such that

W(xo) is the unique light-like vector in E'2 O Vj-.
On the other hand, if S — En ft is an affine hyperplane oriented by

a unit normal vector n, then v — dxY(x)n, x S, is given by v — A(n) — cw,
where c R is the constant value of (n.x), x S. Therefore, for a

family T of parallel affine hyperplanes the corresponding subspace Vy is a

two-dimensional light-like subspace containing w. Conversely, any family T
of hyperspheres or affine hyperplanes having a two-dimensional light-like
subspace containing w as its associated subspace Vy is a family of parallel
affine hyperplanes.

2.2 Conformai, maps into R" as isometric immersions into Vb+1

Given a conformai immersion G: M Vn+1 with conformai distortion

p: M R.f|. {f R : t > 0} of a Riemannian manifold M, which means

that

((dG(p)X. dG(p)Y}} p2(Xt, Y) for all p M and X,Y TpM,

then for any smooth function /j: M -¥ R!j_ the map

Gs, : M -5- VB+1
j p ß( p)G( p),

is also conformai with conformai distortion pp : since dGt,(X) — dp(X)G +
pdGQC), we get

({dGß(X),dGß(Y)]} p2{{dG(XfdG(J)))

because {{G, G)) — 0 whence ((dG(X), G}} 0 for any X TM.
In particular, any conformai immersion /: M Rn with conformai

distortion p: M —> R!j. gives rise to an isometric immersion

mm -xÄ,«vt(/) ffvV: u^ v"'1 •

Conversely, if F: M ~¥ VÄ+1 is an isometric immersion whose image does

not intersect the line R-y; {f-y; : t R) define C(F) — Cm ,M; p(F) : M —¥ R'2

by

foC(F) noF:
where II nM; : VB+1 \ Rw; -a Eb is the projection onto E* given by
n(/?) — p/ip,w)). Since II is easily checked to be conformai with conformai
distortion pu(p) — {{P> '«-'))

> it follows that C(F) is also confonnal with
conformai distortion pu oF — ((F,wj}~~1.

Clearly, we have Cpo^A^po-^Aif)) -f and TPq^a(CPq.,ua(F)) -F for
any conformal immersion /: M Rn and for any isometric immersion

F: M —> V,2+1 with F(M) C V,2+1 \ Ry;.
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2.3 T Oi(n + 2) AS A CONFORMAL MAP IN RB

Throughout this subsection we assume that an admissible triple (po,w,A)
has been fixed and omit the corresponding subscripts for simplicity of notation.

By the discussion in the preceding subsection, any T Oi(«-j~2) gives rise to
a conformai map C(T o *P) in R" (minus the unique point in (T of)_1(R«/)
if Tw and w are not colinear). We will show that the conformai maps so

obtained are precisely the compositions I o L of a similarity and an inversion
with respect to a hypersphere (which can always be taken with unit radius).
We start with some special cases.

Proposition 3. The following holds :

(i) If R Oi(n + 2) is the reflection R(p) — p — 2({p,v))v with respect
to the hyperplane in LK+2 orthogonal to the unit space-like vector v, with

(fv, -«;)) 0, then

(5) C(R of) /
is the inversion with respect to the hypersphere S — En fl

(ii) If G Oi(n + 2) satisfies G(w) — Xw for some X R!j_ then

(6) C(G of)=L
for some similarity L of ratio X. Conversely, given any similarity L of ratio
X R^. there exists G Ofln + 2) satisfying G(w) — Xw such that (6)
holds. In particular, isometries of RH correspond in this way to the elements

of Oi(n + 2) that fix w.

Proof, (i) Writing v as in (4) in terms of the center xq and radius r of
S — Ek fl {i'}2", a straightforward computation yields

R o ¥(x) W(x) ~ 2(mx), v))v - ^-^-(po + A(I(x)) ~ i \I(x)\2w),

where
2 (x - xo~)

I(x) — Xo -r r rx X f Xq,
\x — Xq\l

'

is the inversion with respect to S. Thus IIM; oi?o^P — Wol, which gives (5).

(ii) The map L — oIlM;oTo^P: RH R" has conformai distortion A,

hence is a similarity of ratio A. Thus nw. ofoT^ToL, which yields (6).
For the converse we use that any similarity L of RB of ratio A is given by

L(x) — XB(x) a xq for some xq R" and some B e Of/2). Define
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1 1,
Po j(po + Ax0 - -Fo| uO

and y) — Xw. Then po. w VH+1 and {{/ty?-«))) — 1- Moreover, Ä: RK

Lb+2 given by
A(x) A(B(x)) — (B(x),xo)w

is a linear isometry onto {po.w}^-, hence (po,w,Ä) is an admissible triple.
Let G 0\(n -f- 2) be defined by G(po) — po, G(w) — w and G o A Ä.
Then it is easily checked that

W(L(x)) - p0+A(L(x)) - ~\L(x)\2w XG(W(x))}

which is equivalent to (6).

We now consider the general case.

Proposition 4. For any T e Ofn + 2) there exists a composition I oL
of a similarity L and an inversion I with respect to a hypersphere of unit
radius possibly with I replaced by the identity map) such that

(7) C(ToW) IoL.
Conversely, given any composition IoL ofa similarity and an inversion, there

exists T e Oi(ß 12) such that (7) holds.

Proof Define (po. w,Ä) by po ~ T(po), w — T(w) and A — T o A.

If w — Xw for some A RÜJ., the statement follows from Proposition

3 (ii) (with I replaced by the identity map). Otherwise, consider the

reflection R(p) — p — 2({p,-v))-v determined by the unit space-like vector

v — i- (1/2)«;. and let G Ofn + 2) be given by

G(w) R(w) »-(1 /2)((w}w$w} G(po) - R(po) and GoA=RoÄ.
Then RoG takes w to w, po to po and RoGoA — Ä, whence RoG — T.

By Proposition 3 (i), the map C(R of)- / is an inversion with respect to
the hypersphere of unit radius S — En fl whereas C(G o f — L is a

similarity of ratio A **-(1/2)((w..w}} by Proposition 3(ii). Then (7) follows
from

(8) nw; oroi' nffioüoGoi' nti;oi?oi'oL fo/oL.
For the converse, let R and G correspond to I and L by parts (i) and (ii)
of Proposition 3, respectively, and set T —RoG. Then (7) holds, as follows
again from (8).
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3. A RIGIDITY THEOREM

In this section we prove the following rigidity result for isometric
immersions F: U c R" VB+1, n > 3, and show that it is equivalent
to Liouville's theorem.

Theorem 5. Let F: U —> VB+1 be an isometric immersion ofa connected

open subset of Rn, n > 3. Then F — TLfj^\rj for some admissible triple
(po,w,Ä).

Thus, if an admissible triple (po,w,A) is fixed, then Theorem 5 states that

any isometric immersion F: U VK+1 is given by F for some

T 0\(n -f- 2). In other words, the isometric immersion Wp0,M;A|rj is rigid,
that is, it is unique up to compositions with orthogonal linear transformations

of Ln+2.

First we prove the equivalence with Liouville's theorem.

3.1 Equivalence between Liouville's theorem .and Theorem 5

Let /: U RB be a conformai map on a connected open subset

of R", n > 3. Choose some admissible triple (po,w,A) and set F —

dpQ.v;.j\(J)'- U —> VM+1. Assuming Theorem 5 we obtain that F To _n;| jj
for some T Oi(«~i~2). Then

/ - CP0,uA(F) - Cp,,uA(T o ^vA)\u,

and the conclusion of Liouville's theorem follows from Proposition 4.

Conversely, given an isometric immersion F: U —> Vfi+1 of a connected

open subset of RB, n > 3, set / — CPo.w,_a(F) for some admissible triple
(po,w. A). By Liouville's theorem, either f — L\u is the restriction to U of
a similarity or the composition f — I oL\jj of such a map with an inversion
with respect to a sphere of unit radius. It follows from Proposition 4 that

/ - CPoPda(T o for some T Ofn + 2), hence

F Ipap„A(f)^ToVpo,vA\u.
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3.2 Proof of Theorem 5

The key part of the proof is the following lemma.

Lemma 6. F is umbilic, that is, there exists a normal vector field w
such that

(9) aF(X, F) — ~{X, Y)w, for all X, F G R\

Proof. It suffices to prove that

aF(X, 7) - 0 for all XtY Rn with (X, Y) - 0.

First notice that the normal space of F at any x U is a time-like plane that
contains the position vector F(x), as follows by differentiating {(F.Ff) — 0,

which gives ((dF(X).Ff) — 0 for any IeRs. Differentiating once more yields

10) ({aF(X, Y), F)) {{ VxdF(7), FY) {.X, 7}

for all X. Y Rn, where V denotes the derivative of Ln+2. Now fix x G U
and X eR8, denote by the affine hyperplane through orthogonal to X
and define £ : HOU —y Lß+2 by ^ — dF(X). Then, for any Y e RB orthogonal
to X we have from (10) that

(11) dHY) aF{X, Y) ux(Y)F

for some one-form ux on H H U. Regard © — df as a one-form on
H fl U with values in LB+2. Then, its exterior derivative d®(Y.Z) —

Vy©(Z) - Vz©(7) - ©([F. Z]) satisfies

0 dB(Y. Z) dujx(Y. Z)F -mux(Y)dF(Z) - ux(Z)dF(Y).

Taking linearly independent vectors 7.Z G {X} ^ (here we use n > 3

and using that dF(Y), dF(Z) and F are linearly independent since F is an

immersion and the position vector F is a nonzero normal vector field, we get
u-'x(Y) — 0 — ujx(Z). Thus u-'x — 0.

It is now an easy task to complete the proof of Theorem 5. Actually,
we argue in two different ways. The second argument is included because it
will lead us in the last section to the characterization in Theorem 2 of the

exponential function when n — 2.
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3.2.1 First argument We first show that w is a light-like vector field.
This follows from (9) and the Gauss equation of F,

((aF(X,X), aF(J, F)}} - \\aF(XT, Y)\|2 K(X, Y) - 0,

where K(X. Y) denotes the sectional curvature for a two-plane spanned by
vectors X and Y. How, from (9) and (10) we get

for all X, Y G Rw, thus ((w, Fj) — 1 everywhere. We show next that w is in
fact a constant vector field. First, Vx«i has no tangent component:

{{dF(Y)f> ~iaF{X, Y), •«;)> 0 for all F e R".

On the other hand, its normal component is ((VxF/,Fj)w + ((VxF/,wj)F — 0,
as follows by differentiating {{-«),-£))) — 0 and {{-«;, F}) — 1. We conclude

that F(L) c Ef-. Choosing any po Ef- and any linear isometry A: R" —»

{po,w}^, we obtain that WYl^~oF is the restriction to U of an isometry

H: Rn Rn, hence by Proposition 3 (ii) there exists G Oi(n + 2) fixing
w such that

for po — Gpo and A — G oA.

Remark 7. After proving Lemma 6 and the fact that the vector field w
is a constant light-like vector, the conclusion of the theorem could also be

obtained from the Fundamental theorem of submanifolds of Minkowski space,

applied to F and MP — ^0,w;,a|c/- In fact, we have a vector bundle isometry

r: TxyM^- —> TFM^~, given by r(W) F and r(w) — w, that preserves
second fundamental forms, because of (3) and (9), and normal connections,

for these vanish identically. Thus F — T o MP for some T Oi(« + 2).

3.2.2 Second arguK'IENT Applying Lemma 6 for the coordinate vector
fields we obtain

d2F
(12) ——-— (u) — 0 for all u U and for all i.j — 1with j

{.X, F) {(-«;, F)) iaF(X, Y\F% -(X} Y)

F - MP,
po,ivA oH\u Go^p:^v^^tpQ,v.}.A\U

dldjdUi

hence

(13)

for all u,v U and for all i.j — 1i.j — 1.......n with i ^ j.
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By the connectedness of U, it clearly suffices to prove the statement for
n

the restriction of F to an arbitrary product C — f{ Ij c U of open intervals
j= i

Ij C. R. Define linear subspaces Wi c Ln+2 by

f 0F
Wj — span < —— (u) : u C

OUj

for i —1,....,n. Then (13) implies that Wi,..., Wn are mutually orthogonal.
Since they clearly have dimension at least two and 2n > n + 2 (here we use

n > 3), they can not all be non-degenerate subspaces. Thus, we can assume that

Wi,, Wk are degenerate while W&+1,... ,Wn are non-degenerate subspaces

for some k < n. Then there exists a light-like line Lo such that Wi n Wp — Lo

for i — 1 Choose a second, distinct light-like line L\ orthogonal to

Wk-\. l,..., Wn and set Wj — Wi fl Lp, so that Wj Wi for i > k. Then

Wj is a space-like subspace for each i — 1,... ,n, whose dimension is at

least 1 for i < k and at least 2 otherwise, which implies that the subspace

Lq ® W\ 0 • • • ® Wn® L\ has dimension at least 2-j-H 2(n — k). Since this

can not exceed n -j- 2 we get k — n. Thus, we have a decomposition

L"+2 m---wWnmLu
and corresponding projections F,: Ln+2 Wi. For i — 1,... .n, we have

that Pi o F is constant on Q — [J/,- while the component of F in
j:éi

L\ is constant. Fix u° — (i/{,.... u^) C and define Fy /,• —> Wi by
Fj — Pi<3 F o jf where jf : L -f C denotes the inclusion of Ii into C given
by U{ M- (i^51.. Ui,... ,u®). Then we may choose unit space-like vectors

vn spanning Wi,..., Wn, respectively, such that F,-(u,-) — (m, + apij
for some ô, éR, 1 < i < n, and

k

(14) F - po + Fi o TTi -F {{F. po))F
i=i

where po is a light-like constant vector in Li and w Lo is chosen

so that {(povFj) 1. From (14) and ({F.F}} 0 we get 2((F,pof} —

— i {{Fj o TTj, Fj o TTj». Let A be the linear isometry of RK onto (Lq wL\W
that takes e,- to -iv, where {ei,... }eB} is the canonical basis of R", and let H
denote the translation in R" by the vector (a\,... ,an). Then it follows from

(14) that F — v,j\°II\u- By Proposition 3(0, there exists G Oi(«-j~2)
fixing w such that

Vpo.*Â\u

for po — Gpo and Ä — G o A.
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4. Comments on Nevanlina's proof

One of the most elementary proofs of Liouville's theorem available in the

literature is the one by R. Nevanlina [Ne], which also appears with some
modifications in several textbooks [Be], [dC], [DFN], [Bl]. It goes roughly as

follows. First, it is shown that for any pair of orthogonal vectors e,-, ej e R"
it holds that

(15) p d2f(ej, ed + dp(ßi)df(ßj) + dp{eßdf{ei) - 0,

where p — ip"1 is the inverse of the conformai distortion (p of /, and d2f
denotes the R*-valued symmetric bilinear map such that

OUi OUj OUiOUj

We do not go into details on how (15) is derived, as we shall soon indicate

an alternate way of proving it. We just mention that it follows from a tricky
computation relying on a useful (but mysterious!) fact known as the Braid
Lemma (cf. [Be], p. 224), which states that a trilinear map that is symmetric
on the first two variables and skew-symmetric on the last two must vanish.

The next step is to differentiate (15) to obtain

d2p(ßk ei)df(ßj) h dp(ßi)d2f{ek, eß + d2p(ek, eßdfieß

rdp(ßj)d2f(ßk,et) + dpißßd2fißi,eß + pSf(ek,eueß ~ 0

for all pairwise orthogonal vectors ei:, ej, e^ Rn, where now cPf denotes the

R"-valued symmetric trilinear map such that

j/ij-,..dut ' duj
' duk duidujduk

Then, observing that the sum of the last five terms is symmetric in k and j
one concludes that the same must hold for the first term :

d2p(ßk, ei)df{eß - d2p(eh ei)df{ek).

Since df(eß and df(eß are linearly independent vectors for j ß k, it follows
that

(16) d2p(ßi, eß 0, for all Si, ej with (ßi-,eß — 0.

This implies that there exists a smooth function a such that

(17) d2p(x)(u, v) — o(x)(u. v) for all u, v RB,
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and one further differentiation then shows that a is constant The second part
of the proof proceeds by determining p explicitly through integration of (17),
which leads to the conclusion of the theorem after some more work.

In spite of its simplicity, in that nothing "from outside" is used in the

proof but clever computations, it is hard to grasp the geometry behind it. The

following discussion may help to shed some light on the geometrical meaning
of some of those computations. First, we have

where V is the Levi-Civita connection of the metric induced by / and e,- is

also regarded as a constant vector field along U. Then (15) follows from the

relation between the Levi-Civita connections of conformai metrics (recalling
that (ßi, eß — 0) :

0-/9 Vejßi — p¥ejei + dp(ßi)ej + dp{eße{.

Now let F — TpQwAif) — pf be as in Subsection 2.2, with / Wo/. Then

d2F(ßi, eß - d2p{eh eßf + dp{ei)df{eß + dp{eßdf{ei) + pd2f{eu eß.

On the other hand, using (2) we get d2f(ßi, eß — Vejdf(ßi) dx¥(d2f(ßi, eß),
hence

d2F(ßi, eß - p"ld2p(ßi, eßF + dW (.dp(ei)df(eß -f dp{eßdf{e{) + pd2f(eh eß)

- p""'ld2p{ei,eßF,

This gives an explicit expression for the one-form ux in (11):

(18) o-'x(F) ~ p"1d2p(X, Y) for all Y e RB orthogonal to X

hence (16) is equivalent to the vanishing of ux for every IeRB.
Another important remark for us concerns the geometrical meaning of (15) :

if Hi denotes an affine hyperplane orthogonal to e,, then (15) amounts to

saying that S,- — f{Hi fi U) is a piece of a hypersphere or affine hyperplane
in R" Namely, assuming e,- of unit length, a unit normal vector field to Si

is Ni =2 pdf{ei), thus (15) is equivalent to

19) VejNi dp{eßdf{ei) h pd2f{ei, eß - -dp{e{)df{eß,

which just says that all principal curvatures of Sf are equal to dp{ei). In
particular, (16) expresses the fact that such principal curvatures are constant

along Si.

Applying this observation for <?,• — dfdui, 1 < i < n, we see that the

geometric content of (12) (for F — 2p0,M;^.(/)) is that / maps the pieces in U
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of all coordinate hyperplanes Uf — a(- R, 1 < i < n, to pieces of hyperspheres

or affine hyperplanes. This suggests an alternate, more geometrical argument to
conclude the proof of Liouville's theorem after obtaining (16). It relies on the

following characterization of n mutually orthogonal families of hyperspheres

or affine hyperplanes in RB, n>3:

Proposition 8. Let n families of hyperspheres or affine hyperplanes
in R", n >3, each with at least two elements, have the property that every
member of one family be orthogonal to every member of all of the others.
Then either they are orthogonal families of parallel affine hyperplanes, or
there exists an inversion that maps them into such families.

Assuming Proposition 8 for a while, the proof of Liouville's theorem is
then completed as follows : composing / with an inversion as in Proposition 8

we end up, possibly after a further composition with an orthogonal linear

map, with a conformai map that takes coordinate hyperplanes into coordinate

hyperplanes with respect to the same coordinate. But a map g : U -> RB that
takes coordinate hyperplanes into coordinate hyperplanes with respect to the

same coordinate must clearly be of the form

g(x i,. ...xn)~ (gi(xi),..., gn(xn))

for some smooth functions of one variable g\,... ,gn. If, in addition, g is a

conformai map, then we get from \dg/dxj\ — \dgfdxj\ at any point of U that

gfxf) — ±Xxi aj for some À. a,- G R, 1 < i < n, that is, up to a translation
and reflections in the coordinate hyperplanes the map g is a dilation by A.

The conclusion follows.

4.1 Proof of Proposition 8

The following simple proof of Proposition 8 is a good illustration of the

usefulness of the model of Euclidean space of Section 2 to study problems of
a conformai nature. Let J) (Sffxqa, 1 < «, be families of hyperspheres

or affine hyperplanes in R" as in the statement. Write Sf~ — E" fl {vf} - for
Sf e J-'i and unit space-like vectors vf, 1 < i < n. For each i 1

let Vi c L»+2 be the subspace spanned by the vectors vf, A A. Then the

assumption on the families J-'i, 1 < i < n, amounts to saying that Vi c Vf-
for i.j— 1.... ,n with iff. On the other hand, the fact that J) has more
than one element implies that the dimension of V"/ is at least two. As in
Subsection 3.2.2, it follows that there exists a light-like line I such that

Vf.n Vf — l for i — 1...., n. Choose a distinct light-like line 1 and set
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Vi — Vi n î1-. Then each V,- is a one-dimensional space-like subspace and we
obtain a decomposition

Ln+2 - I ® t?i © • • • © VH ij I.

Now we consider two possible cases, according as w belongs to t or not. In
the former case, each Ti is a family of affine hyperplanes parallel to the affine

hyperplane E* fil V/, 1 < i < n. If w $ î, choose Ç î with ({ÇT.w}} 1

and let I be the inversion in Rß determined by the reflection R 0\(n + 2)
with respect to the hyperplane in LB+2 orthogonal to the unit space-like vector

v — Ç 4- (1/2)«?, so that w — -2T(Q. Arguing as before with V, replaced
by T( V{), 1 < i < n, we obtain that I takes the families Tj into mutually
orthogonal families of parallel affine hyperplanes as in the preceding case.

4.2 Remarks on the regularity
One final remark on Liouville's theorem concerns the amount of regularity

that the map / must have in order for its conclusion to be true. The existing
proofs in the literature usually hold for C3 maps. The result is known for
C1 maps, but the proof is much harder [Ha]. Nevanlinna's proof requires/
to be of class C4 : this is needed for the conclusion that the map a in (17)
be constant. Our proof also needs the C4 assumption: the argument used in
Lemma 6 to prove that the one-form ux in (11) vanishes depends on the

map £ being C2 ; this is equivalent to F being C3, which in turn amounts

to / being C4. However, our proof can be made into a C3 proof if we

replace this argument by the one just explained in Nevanlinna's proof which
derives (16) from (15), and take into account that (16) is equivalent to the

vanishing of ujx for every IeR#, as pointed out after (18). Notice that also

Nevanlinna's proof becomes valid for C3 maps if we replace its second part
(after having (16)) by the geometrical argument proposed in this section.

5. The case n - 2

In our proof of Theorem 5 in Subsection 3.2 we have indicated that the

assumption that n > 3 is essential to prove that the one-form ux in (11)
vanishes for all X Rn. As a consequence, this assumption is also needed to
derive (12), which is equivalent to the vanishing of ufor all coordinate

vector fields d/dui, 1 < i < n. Our discussion in the previous section then
makes clear the additional condition that / must satisfy in order for this to
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hold when n — 2 : it must map each coordinate curve of one family (and
hence of both) to a piece of a straight line or circle. This follows from (19),
which for n — 2 shows that the curvature of a coordinate curve x xo is (up
to sign) dp/dx, and hence the vanishing of ujß/ßx, that is, of d2p/dxdy, is

precisely the condition for this curvature to be constant.

5.1 Proof of Theorem 2

Set F — U * ^/3 f°r some admissible triple (po, w,A). By the

discussion in the preceding paragraph, under the assumptions of Theorem 2

we may proceed exactly as in Subsection 3.2.2 : define linear subspaces

WUW2 C L4 by

f dF \ f dF 1

Wi — span < —(x,y) : (.x,y) C > and W2 — span < —(x.y) : (x.y) C >,
i (jx \ i (jy \

where C I x J is a product of intervals contained in U. Then we have

as before that W\ c Wf, which now leads to two possibilities : either there

exists a light-like line L such that W\ n ITf — L — W2 fl W2 > or one

W\ and W2, say W\, is a time-like two-dimensional subspace and W2 is its

space-like two-dimensional orthogonal complement. In the former case, we

are exactly in the situation of Subsection 3.2.2, so we arrive at the conclusion
of Liouville's theorem: / is either the restriction / — L\jj of a similarity or
the composition f — I oL\u of such map with an inversion with respect to a

circle of unit radius.

Now assume that W\ is a time-like two-dimensional subspace. Writing
F — (F\, F2) according to the decomposition L4 — W\ ® W2, we obtain

(by looking at the definitions of W\ and W2) that F\ and F2 depend only
on x and y, respectively, and thus they define unit speed curves in W\ and

W2, respectively. Moreover, from

0 ((F, F}} ((Fi, Fij) + ((F2,F2j)

it follows that there exists c > 0 such that ((Fi,Fi)) — —c2 and {{.F2,F2}) —

c2. Choosing orthonormal bases {zi-.Zi} of W\, with l(zir.Zif} — 1, and

{73.Z4} of W2 we obtain

F — c(cosh((dir + xo)jc)zi + sinh((dir + xo)/c)z2

+ cos((±y Fyo)/c)zz + sin((±y + yo)/c)za)

for some xo,yo R- Hence F — c(GoH\u), where H is a composition
of a dilation by 1/c, reflections in the coordinate axis and a translation by

(xo,yo) R2, and
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G(x,y) — cosh(x)zi 4- sinh(x)z2 + cos(y)z3 + sin(y)z4

Set w — —Z\ — Z2, po (zi — Z2)/2 and let Ä: R2 -¥ W2 be the linear

isometry that takes e\ to Z3 and <22 to Z4- Then we can write G as

G(x.y) •— e~xWpQ ^} ^{ex.p{x,yy),

where exp denotes the complex exponential function. Now let T Oi(4) be

given by r(-yj) — w, T(po) po, and T o A — Ä. By Proposition 4,

Cpo.tnAVpo.ajO C^A(T O — I OL

for some similarity L and some inversion I with respect to a circle of unit
radius. Thus,

/ CP0,1dA(F) C^Ac G o H\ u)

~ Cpo-.mA^-pvsh.jO 0 exp oH\u - I o L o exp oH\ v

Had we assumed instead W2 to be time-like, we would get the same

conclusion with x and y interchanged, thus / would be given as before after

a reflection in the line y — x.

5.2 Remarks on Theorem 2

Although we have not been able to find Theorem 2 explicitly stated in
the literature, it is very likely that it is not new. In fact, browsing through
the monumental treatise by Darboux [Da], we found some interesting related

results that lead to an alternate proof, which we briefly sketch below.

First we recall that one-parameter families of curves that are the images

by a conformai map in the plane of the family of coordinate curves x — xo

or y — yo are referred to in the classical literature as isothermal families
of plane curves. Isothermal families and their orthogonal trajectories admit a

neat characterization in terms of their curvatures (cf. [Da], Vol. Ill, p. 154,

Eq.(36)), which implies that orthogonal trajectories of isothermal families all

of whose members are (pieces of) straight lines or circles must also have the

same property. Thus, starting with a map / as in Theorem 2 and taking the

images by / of the families of coordinate lines, we end up with two one-

parameter families of straight lines and circles, every member of one family
being orthogonal to every member of the other. Then we also find in [Da] (cf.
Vol. I, p. 228) the following two-dimensional version of Proposition 8 asking
to come into play:
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Proposition 9. Let two families of straight lines and circles, each with
at least two elements, have the property that every member of one family
be orthogonal to every member of the other. Then either they are orthogonal
families ofparallel lines, or one of them is a family of concentric circles and
the other a family of straight lines through the common center, or there exists

an inversion that maps them into families of one of those two types.

Using this, a proof of Theorem 2 readily follows : composing our conformai

map / with an inversion I given by Proposition 9, and then (working locally)
with the complex log function in case I of maps the the coordinate curves
into families of straight lines and circles of the second type, we end up,
possibly after a further composition with a reflection in the line y — x, with
a conformai map that takes coordinate curves into coordinate curves with

respect to the same coordinate. Then we can argue exactly as in the paragraph

preceding Subsection 4.1 to conclude that such a map is, up to a translation
and reflections in the coordinate axes, a dilation by a nonzero constant.

5.2.1 Proof of Proposition 9

The proof of Proposition 9 serves as a final illustration of the ideas in
Section 2. Let T) — 1 < i < 2, be families of straight lines and

circles as in Proposition 9. Write S/' E2 fl for Sf e and unit
space-like vectors vf, 1 < i < 2. Let V,- c L4 be the subspace spanned by
the vectors vf, 1 < i < 2. Then the assumption on T\ and Ti amounts to
saying that V\ c Vf. On the other hand, the fact that J~) has more than one
element implies the dimension of Vé to be at least two. Then either there exists

a light-like line L such that V\ fl Vf — L — V?. H Vf, or one of V\ or Vi, say

V\, is a time-like plane and Vi is its (space-like) orthogonal complement. In
the former case, arguing exactly as in the proof of Proposition 8, we conclude

that, up to an inversion in R2, T\ and Ti are orthogonal families of parallel

straight lines. Now assume that V\ is a time-like plane. If w Vi, then T\
is a family of concentric circles, as discussed in Subsection 2.1. Otherwise,
choose one of the two vectors in E2 fl V\, say £. Notice that these two
vectors represent precisely the two common points of all the elements of
Now consider the inversion I in R2 determined by the reflection T Oi(4)
with respect to the hyperplane in L4 orthogonal to the unit space-like vector

v — Ç ~f (1/2)-«;. In other words, I is the inversion with respect to the sphere
of unit radius centered at the point zeR2 such that W(z) — Then T(W\)
is a time-like plane containing w — —2T(Q, thus the family I(J-\) of images
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by I of elements of J-\ is a family of concentric circles, since it has T(W\) as

associated subspace. It follows that KJFf) is a family of straight lines through
the common center of the circles of T\.

5.3 A FINAL REMARK ON THE CASE « — 2.

To conclude, we observe that if a conformai map f:U~4 R2 as in
Theorem 2 has the property that every segment of straight line contained in U
is mapped by / to a piece of circle or straight line, then it is given as in the

statement of Liouville's theorem. For, by the discussion in the previous section,

under this assumption Lemma 6 holds for F — 2äiM;,a(/): U V3 c L4,
and hence the remaining part of the proof of Theorem 5 also applies.
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