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NORMAL SURFACES IN TOPOLOGICALLY FINITE 3-MANIFOLDS

by Stephan Tillmann *

Introduction

Spun-normal surfaces made their first appearance: in unpublished work by
Thurston. He described essential surfaces in the figure eight knot complement
as spun-normal surfaces with respect to the ideal triangulation by two regular
ideal hyperbolic tetrahedra. There have since been interesting applications of
spun-normal surfaces; for instance in work by Weeks [14], Kang [8], Kang
and Rubinstein [9], They are also part of the repertoire of many people

working in the field. There does not however appear to be a basic reference

for fundamental properties of these surfaces. This paper attempts to fill this

gap.

Let M be the interior of a compact 3-manifold with non-empty boundary.
Then M admits an ideal triangulation and this gives the end-compactification
of M the structure of a triangulated, closed pseudo-manifold P (see Proposition

1.2). The complement of the 0-skeleton in P is identified with M,
and spun-normal surfaces in M can be studied using the triangulation of P.
The remainder of this introduction restricts to this setting; Figure 1 shows

a spun-normal surface in a pseudo-manifold with boundary and indicates tire

more general situation.

A spun-normal surface meets each 3-simplex in a union of pairwise
disjoint normal discs such that there are at most finitely many normal

quadrilaterals but possibly infinitely many normal triangles which accumulate

at the 0-skeleton of P. A spun-normal surface is therefore properly embedded

in M. Two spun-normal surfaces are regarded as equivalent if there is an

isotopy taking one to the other whilst leaving all simplices invariant (normal

* This work was supported by a Postdoctoral Fellowship by the CRM/ISM in Montréal and
under the Australian Research Council's Discovery funding scheme (project number DP0664276).
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Figure 1

A spun-normal surface in a non-orientable pseudo-manifold with boundary. The triangulation

has a single 3-simplex with two faces identified as indicated by the arrows. There
are two vertices ; the link of t) is a Möbius band, and the link of the other vertex is a disc.
The shown spun-normal surface spins into o ; it is a disc minus a point on its boundary
and it meets a suitable vertex linking surface, Bq in a 2-sided, non-separating arc.

isotopy). One may choose a small open neighbourhood of each 0-simplex 1

in P such that its boundary, B„, is a closed (possibly non-orientable) normal
surface. The topology of spun-normal surfaces is analysed in Section 1, and

the main observations are the following :

1. A spun-normal surface without vertex linking components is up to normal

isotopy uniquely determined by its quadrilateral discs (see Lemma 1.19).

2. If two spun-normal surfaces meet every 3-simplex in quadrilateral discs of
the same type, then their geometric sum is well-defined (see Lemma 1.28).

3. For each spun-normal Surface S and each 0-simplex o there is a well-
defined element d„(S) Hi{B0;Z) which determines S in a neighbourhood
of ü uniquely up to normal isotopy (see Lemma 1.33 and Lemma 1.35).

4. A spun-normal surface S is topologically finite unless there is some

0-simplex o such that d„(S) ^ 0 and \UV) < 0 (see Corollary 1.36).

5. (Kneser-Haken finiteness) If S is a spun-normal surface no two components
of which are normally isötöpic, then the number of components Of S which
are not vertex linking is at most 12f, where t is the number of 3-simplices
in the triangulation (see Lemma 1.37 which includes a stronger bound).

Section 2 analyses algebraic properties of a spun-normal surface S

derived from the quadrilaterals in its cell structure. Recording the number

of quadrilaterals of each type gives the normal Q-coordinate of S. The

Q-matching equations described by Tollefson [12] for compact 3-manifolds
result from the fact that a properly embedded surface meets a small regular
neighbourhood of an edge in a collection of discs, and that each of these

discs is uniquely determined by its intersection with the boundary of tire
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neighbourhood. The equations are shown to give a necessary and sufficient
condition on a collection of quadrilateral discs to be (up to normal isotopy)
contained in the cell structure of some spun-normal surface. A spun-normal
surface without vertex linking components is thus uniquely determined by its

normal Q-coordinate (see Theorem 2.4).
The triangulation of P is denoted by T and the solution space of the

Q -matching equations by Q(T). This is a real vector subspace of R3r.

The projective solution space PQ(T) is the intersection of Q(T) with the unit
simplex; it is a convex rational polytope. Rational points are therefore dense

in PQ(T) and correspond to the projective classes not merely of spun-normal
surfaces (which are embedded), but also of immersed and branched immersed

spun-nonnal suifaces (see Proposition 2.7).

Section 3 introduces the boundary curve map

d: (JÇJ s —> ©o//i(Bn; R),

which is linear and generalises the above map d0. It is thus possible to

compute d„{S) directly from the normal g-coordinate of S. The definition of
d is motivated by the boundary map used by Kang and Rubinstein [9] in the

case where each vertex linking surface is a torus or Klein bottle, and their
methods are generalised to prove the following:

Theorem 0.1. Let P be a closed 3 -dimensional pseudo-manifold with

triangulation T. Then

1- g(T) has dimension v0 — e + 3f — \(P) + 2t - v„ ;

2. d: Q(T) —F ©jA ISwîXï & onto, and its restriction to integer lattice

points in Q{T) has image of finite index in ®0Z7i(Z?0; Z) r and

3. PQ(T) is non-empty and hence of dimension dimg(T) - L
Here t,e,v is the number of 3 -simpliees, l-smplices, 0-simplices respectively;

so x(P) — v — e + t. Moreover, v — v0 + v„, where v„ is the number

of 0-simplices with non-orientable linking surface.

Note that \iP) — 0 — v„ if P is a manifold, and \(P) — u if the link
Of each vertex is a torus or Klein bottle. The above dimension of Q(T) and

target of d correct the main result of [9] in the case of pseudo-manifolds
with non-orientable vertex links.

The set of projective classes of (embedded) spun-normal surfaces has

a natural compactification, PF(T) C PQ(T), points of which correspond
to projective classes of certain transversely measured singular codimension-

one foliations of the complement of the ©skeleton, M. The restriction
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d: PF(T) -tt Ks determines the (possibly singular) foliation of
each Bp. If P is orientable, then the intersection pairing on R)
defines a bi-linear skew-symmetrie form on Q(T) ; for any N. L e Q(T) :

</V,L> V/,(ô0((V),Ôn(L))

This is used to analyse: the structure of the components of PF(T).

THEOREM 0.2. Let P be a closed 3 -dimensional pseudo-manifold with

triangulation T. Tire set PF(T) is a finite union of convex rational polytopes.
Each maximal convex polytope R in this union satisfies dimÄ < t - 1.

Moreover, if P is orientable then :

(0.1 \i/'! - 1 < dimR < \(/') + dinu/x'ftkerd),

and if P is non-orientable then :

(0.2) \(/'! — — 1 < dim/? < 2\</'! — + dim(/? n ker<9),

H'/icrc dim0 — — i throughout.

The lower bounds in Equations (0.1) and (0.2) are shown to be sharp by
the examples given in Section 4, tire complement of the figure eight knot and

the Gieseking manifold.

This article does not address many topics which are standard in algorithmic
topology. For instance, work by Jaco and Oertel [3] implies that there is

an algorithm to determine whether a topologically finite manifold is large,
i.e. whether it contains a closed, incompressible, 2-sided surface distinct from
a 2-sphere or a vertex linking surface. The extension of such algorithms to

spun-normal surfaces (for instance, to determine whether there are essential

discs or annuli) is left for future research; it presupposes the ability to put
incompressible surfaces into spun-normal form and to decide whether a spun-
normal surface is incompressible — neither of which is addressed in this

paper.

Acknowledgements. The author thanks Daryl Cooper for many enlightening

conversations about spun-normal surfaces. He also thanks Steven Boyer,

Craig Hodgson and Hyam Rubinstein for helpful comments. Thanks to Saul

Schleimer for pointing out that there does not seem to be a complete treatment
of the geometric sum operation in the literature.
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1. Spun-normal surfaces

This section defines spun-normal surfaces in a 3-dimensional pseudo-
manifold (possibly with boundary) and analyses their basic properties. It is

also shown that a topologically finite 3-manifold is homeomorphic to the

complement of the 0-skeleton in a closed, triangulated pseudo-manifold.



334 S. TILLMANN

1.1 PSEUDO-MANIFOLD

Let A {Af,...,A2} be a disjoint union of 3-simplices, each of which
is a regular Euclidean 3-simplex of edge length one. The subsimplices of the

elements in A are referred to as simplices in A. Let <E> be a collection of
Euclidean isometries between 2-simplices in A with the property that for each

2-simplex A2 there is at most one isometry having A2 as its range or domain

(but not both). There is a natural quotient map p: A —» A/O. Let P A/®
and note that P inherits a singular PL cone-metric. Since p restricts to an

embedding of the interior of every 2-simplex and every 3-simplex, the only
possible non-manifold points in P are at images of vertices and barycentres
of 1-simplices.

Definition 1.1 (Pseudo-manifold). The quotient space P — Ä/O is a

pseudo-manifold if p restricts to an embedding Of the interior of every
1-simplex in A.

A pseudo-manifold is closed if each 2-simplex in A is the range or
domain of an element in ®, otherwise it is a pseudo-manifokl with boundary.
A pseudo-manifold is orientable if all 3-simplices in A can be oriented such

that all elements in ® are orientation reversing^ For the remainder Of this

paper, it is assumed that P is a pseudo-manifold and a quotient map p: A ->• P
is fixed; additional hypotheses will be added.

1.2 Triangulation
The image under p of an «-simplex in A is called an n-singlex in P.

The resulting combinatorial cell-decomposition of P is termed a triangulation
of P and denoted by T — (A, <i>,p). If p restricts to an embedding of
each simplex, then T is a triangulation in the traditional sense; it will then

be referred to as a simpÊeM triangulation. The image in P of the set of
i-simplices in A is denoted by P(,) and termed the i-skeleton of P.

The number of 3-singlices in P is t, and we denote by / the number

of 2-singlices, e the number of 1-singlices and v the number of O-singlices.

1.3 Ideal triangulation
A manifold is topologically finite if it is homeomorphic to the interior

of a compact 3-manifold. If P is closed, then removing the 0-skeleton

yields a topologically finite 3-manifold M — P \ P(0) and P is called
the end-compactification of M. This motivates the following terminology.



NORMAL SURFACES IN TOI'Ol OCR'AI I Y FINITE 3-MANIFOLDS 335

An ideal i-simplex, i £ {1,2,3}, is an (-simplex with its vertices removed;
the vertices of the i-simplex are referred to as the ideal vertices of tire ideal

i-simplex. Similarly for singlices. The restriction (A \ A®,

of the triangulation of P to P \ fW is an ideal triangulation of P \
A 0-simplex of P is referred to as an ideal vertex of the ideal triangulation
or of M.

If M is the interior of a compact 3-manifold M with non-empty boundary
and M is homeomorphic to P\ P(0) for some pseudo-manifold P, then M
is said to admit an ideal triangulation. The following result is implicit in

Matveev [10] and shows that every topologically finite 3-manifold arises in
this way from a closed pseudo-manifold :

Proposition 1.2 (Topologically finite manifold has ideal triangulation).

If M is the interior ofa compact 3 -manifold M with non-empty boundary, then

M admits an ideal triangulation. The ideal vertices of the ideal triangulation
are in one-to-one correspondence with the boundary components of M.

Proof. This derives from the following results in [10]. Theorem 1.1.13

due to Casier asserts that M possesses a special spine I ; it has the

property that M is homeomorphic to a regular neighbourhood of E in M.
Theorem 1.1.26 implies that X is dual to an ideal triangulation of M with
the property that the ideal vertices are in one-to-one correspondence with the

boundary components of M.

1.4 Normal discs, arcs and corners

A normal corner is an interior point of a 1-simplex. A normal arc is

a properly embedded straight line segment on a 2-simplex with boundary

consisting of normal corners.
A nonnal disc is a properly embedded disc in a 3-simplex whose boundary

consists of normal arcs no two of which are contained on the same face of the

3-simplex; moreover, the normal disc is the cone over its boundary with cone

point the barycentre of its normal corners. It follows that the boundary of a

normal disc consists of either three or four normal arcs, and it is accordingly
called a normal triangle or a nonnal quadrilateral. A normal disc is uniquely
determined by its intersection with the 1-skeleton.

A normal isotopy is an isotopy of a simplex which preserves all its

subsimplices. There are exactly three normal isotopy classes of normal arcs

in a 2-simplex. A normal arc is called v-type if it separates the vertex o

from the other two vertices of the 2-simplex. There are exactly seven normal
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Figure 2
Normal discs in a 3-simplex and normal arcs in a 2-simpleX

isotopy classes of normal discs in a 3-simplex (four of normal triangles and

three of normal quadrilaterals). Given a normal triangle t in a 3-simplex, there

is a unique complementary region containing precisely one 0-simplex n ; f is

said to be dual to o.

A piecewise linear arc in a 2-simplex is termed an elementary arc if it
is normally isotopic to a normal arc. A piecewise linear disc in a 3-simplex
is termed an elementary disc fit it is normally isotopic to a normal disc.

The following lemma provides a useful normal isotopy for any collection of
elementary cells.

Lemma 1.3 (Straightening). Given an arbitrary collection of pairwise
disjoint elementary arcs in a 2-simplex, there is a normal isotopy keeping the
1 -skeleton fixed and taking each elementary arc to a nonnal arc. Given an

arbitrary collection ofpaimise disjoint elementary discs in a 3 -simplex^ there

is a normal isotopy keeping the 1 -skeleton fixed and taking each elementary
disc to a normal disc.

Proof. Let A2 be a 2-simplex containing an arbitrary collection Of pairwise
disjoint elementary arcs. There is a homeomorphism A2 —> A2 which fixes

the boundary and takes each elementary arc to a normal arc. The first part of
the lemma now follows from the fact that a homeomorphism of a closed ball
which fixes the boundary is isotopic to the identity.

Given an arbitrary collection of pairwise disjoint elementary discs in a

3-simplex A3, there: is a homeomorphism h: A3 A3 which fixes tire

1-skeleton and takes each elementary disc to a normal disc. The first part of the

lemma shows that the restriction of h to ÔA3 is isotopic to the identity. One

can therefore isotope h in a neighbourhood of OA3 such that the boundary
of each elementary disc is straight and the result follows as above.
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The image under p of a normal disc (respectively arc, corner) in A is

called a normal disc (respectively arc, comer) in P. Note that a normal disc

in P may have fewer arcs or corners in its boundary than its pre-image in A.
Two normal discs in P are said to be of the same type if they are the images
Of normally isotopic normal discs in A. A nonnal isotopy of P is an isotopy
of P which leaves all singlices invariant.

The above definitions apply verbatim to define normal cells in ideal

simplices and ideal singlices, and normal isotopies in P\ P®,

1.5 Normal surfaces and normal curves

This subsection collects some well-known facts about normal surfaces;
the reader should consult Jaco and Rubinstein [4] and Thompson [11] for
details and proofs.

Definition 1.4 (Normal surface). A subset S of P is a nonnal surface
in P if it meets every 3-singlex in P in a (possibly empty) finite union of
pairwise disjoint normal discs.

Note that a normal surface is a properly embedded (not necessarily
connected) compact surface in (P \ P(0i) c P.

Lemma 1.5. Let A be a finite union of pairwise disjoint normal arcs
in A2, Then A is uniquely determined by its intersection with the 1 -skeleton

up to nonnal isotopy.

A curve on a compact, triangulated surface is nonnal if it meets each

2-singlex in a finite collection of pairwise disjoint normal arcs. A curve will
always be connected, whilst a surface may not be connected.)

Lemma 1.6. Every non-empty normal curve in dA} is simple and closed.

Moreover it bounds some properly embedded disc in A3.

Consequences of Lemma 1.5 are the following:

Corollary 1.7. A finite union ofpairwise disjoint normal curves on 9A3

is uniquely detennined by its intersection with the I-skeleton up to nonnal
isotopy.
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Corollary 1.8. Let S be a normal surface in P. Then S is uniquely
determined by its intersection with the 1 -skeleton of P up to normal isotopy.

The length of a normal curve is the number of intersections with the

1-skeleton (equivalently : the number of normal arcs it is composed of).

Lemma 1.9. Every normal curve 7 bounds a disc in 9A3 containing one

or two vertices. In the former case, 7 has length three, in the latter, its length
is a multiple of four.

Lemma 1.10. If a non-empty normal curve y does not meet some edge

of A3, then 7 has length three or four.

1.6 SlU/X-NORMAI. SURFACES

The definition of a normal surface is now extended; the following notions

are defined with respect to the PL cone-metric on P.

Definition 1.11 (Normal subset). Let F be a pseudo-manifold (possibly
with boundary). A subset S of P is normal if
1. S intersects each 3-singlex in F in a (possibly empty) countable union of

pairwise disjoint normal discs;

2. the set of accumulation points of SnP(1) is contained in P*|
3. if {.l} C S has accumulation point x £ P, then x G S or x P®,,

Note that any normal subset of P is contained in P\ Pi<'5 The following
two facts follow from the observation that whenever a normal subset S of P

meets a 3-singlex A3 in a point x ë dA3, then it meets A3 in a normal disc

containing x.

Lemma 1.12. Let S be a normal subset of P. Then p~l(S) is a normal
subset of A.

Lemma 1.13 (Normal subset is a surface). Let S be a normal subset

of P. Then every point on S has a small closed neighbourhood in S which
is homeomorphic to a disc.

For each 0-singlex 0 e P° choose a small, open neighbourhood N0 with
the property that the neighbourhoods are pairwise disjoint and ÔNV \ ÔP -=- Bv



NORMAL SURFACES IN TOI'Ol OCR'AI I Y FINITE 3-MANIFOLDS 339

is a normal surface in P. Note that all normal discs in Bv are normal triangles
no two of which are normally isotopic, A normal subset in P is called a

vertex linking surface if it is normally isotopic to B0 for some 0-singlex o.
Let Pc P\U#0.

Remark 1.14. Condition (2) in Definition 1.11 is not redundant. For

instance, it rules out that countably many pairwise disjoint copies of Bv
accumulate on Bv.

Each surface B„ consists: Of normal triangles and hence inherits an induced

triangulation %. A path in is called normal if it intersects each triangle
in % in a (possibly empty) disjoint union of normal arcs.

Lemma 1.15 (Vertex linking surface). If S is a normal subset of P

consisting only of normal triangles, then each connected component of S is

a vertex linking surface.

Proof. Without loss of generality, it may be assumed that S is connected.

Given a normal triangle in S dual to c £ E10?, the normal triangles it meets

along its boundary arcs are all dual to u. Whence all normal triangles in S

are dual to a fixed 0-singlex o Since Sr\P° ll Pa) consists of finitely many
points, one may (up to normal isotopy) assume that S is contained in Nv.
Since S meets every 3-singlex in a union Of pairwise disjoint normal discs,

it follows that it meets every 3-singlex incident with o in at least one normal

triangle contained in A),. This forces S to be normally isotopic to B{,.

Lemma 1.16 (Finiteness). A normal subset S of P contains at most

finitely many nonnal quadrilaterals.

Proof. If S contains infinitely many normal quadrilaterals, then it contains

infinitely many quadrilaterals of the same type. Using condition (2), there are

finitely many possibilities for the limit points of the normal corners of these

quadrilaterals. In each case, one can construct a sequence of points on S

which accumulates on a point not on S but in the interior of a 1-simplex
in P, contradicting the third condition.

Lemma 1.17. Every connected component of a normal subset of P is a

properly embedded Surface in P \ P(Q).
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Proof. It suffices to assume that S is connected and contains a normal

quadrilateral. Then S contains finitely many normal quadrilaterals. If S

contains only finitely many normal triangles, then S is a normal surface and

therefore a closed, properly embedded surface in P\P(0). Hence assume that S

contains infinitely many normal triangles. We may assume that Pc contains all
normal quadrilaterals contained in S and that dPcT\S is transverse. Conditions

(2) and (3) in Definition 1.11 imply that PcPi P(1)nS contains finitely many
points. Since normal triangles are flat, it follows that S n c)PC consists of
finitely many pairwise disjoint simple closed curves and arcs. Hence SnPc is

a properly embedded surface in P°. Since Nv can be made arbitrarily small,
the conclusion follows,

It follows from Lemmas 1.15 and 1.16 that a normal subset may have

infinitely many connected components at most finitely many of which are not

vertex linking.

Definition 1.18 (Spun-normal surface), A normal subset of P is termed

a spun-normal surface in P if it has finitely many connected components.
If a spun-normal surface contains infinitely many normal triangles dual to

u P then it is said to spin into u. In particular, a normal Surface is a

spun-normal surface which spins into no vertex.

Lemma 1.19 (Uniqueness). Let So and Ni be-.normal subsets in P with
the property that for any type of normal disc, So and Si contain the same

(not necessarily finite) number of normal discs of this type. Then So and S\

are normally isotopic.

Proof. There is a normal isotopy in A which takes p~1(So) to

and, in particular, takes the intersection of p~l(So) with the 1-skeleton to the

intersection of p~l(S\) with the 1-skeleton. From the latter, a normal isotopy
taking // (S. to p~1(S\) can be constructed which descends to P.

1.7 Regular exchange and geometric sum: Normal arcs

Given two normal subsets S and F of P, one may perturb S by an

arbitrarily small normal isotopy So that S and F have no common point of
intersection with the 1-skeleton, and one can attempt to produce a new normal
subset from S U F by performing a canonical cut and paste operation along
S n F. Such a geometric sum of S and F was first used by Haken. Since a
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normal disc is uniquely determined by its boundary, it is convenient to start

with the geometric sum of normal arcs.

Definition 1.20 (Normal subset of A2). A subset: A of a 2-simplex A

is normal if
1. A is a (possibly empty) countable union of pairwise disjoint normal arcs ;

2. the set of accumulation points of An A'1! is contained in A??;

3. if {.V; j c A has accumulation point re A, then x e A or re A*.

Definition 1.21 (General position). Two normal subsets of a 2-simplex
A2 are said to be in general position if their intersection is contained in the

interior of A2.

Let: a be a normal arc on a 2-simplex A2 dual to vertex o. Denote by Ca

the complementary region of A2 \ a containing o. Given normal arcs a, b on
A2 in general position, denote by D a small (piecewise linear) disc in intA2

with centre a n b. Then define a !±i b to be the union of two normal arcs

obtained as follows. Remove from a U b the intersection with D and adjoin
to it two arcs on dD (termed circular arcs) as follows. If a and b are of
different types, then add the intersection of <)D with (Cn U Cb) \ (Ca 'Fl Gb)

Otherwise take the intersection with the complement thereof. This procedure
is termed a regular exchange at the intersection point, and the position of the

circular arcs is referred to as the switch condition at the intersection point.
The result is a disjoint union of two elementary arcs which can therefore be

straightened to a disjoint union of two normal arcs which is denoted by ottl b

and termed the geometric sum of a and b. This is illustrated in Figure 3.

Let A and B be two normal subsets of a 2-simplex A2 which are in
general position. For each intersection point p e A n B, one can choose a

sufficiently small disc D with centre p so that if p — a n b for a c A and

be B, then D n (A U />') Dfl (o U b), and any two such discs are disjoint.
One can then perform a regular exchange at each intersection point and

the result, C, is (a priori) a collection of embedded arcs (possibly open or

half-open) and circles in A2. This is termed the regular exchange at AH B

since C is uniquely determined up to normal isotopy fixing the 1-skeleton.

The definition of regular exchange extends to any two elementary arcs

meeting transversely in a single point in the interior of A2. Since the resulting
normal arcs are uniquely determined by the relative position of the intersection

points of the elementary arcs with dA2, it follows that performing a regular
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(b) Regular exchange of normally isotopic arcs

Figure 3

exchange between two elementary arcs and then straightening gives the same

result as first straightening the elementary arcs, then taking the geometric
sum. The following argument is similar to the one given in lecture notes by
Cameron Gordon [2],

Lemmà 1.22 (Geometric sum of normal arcs). Let A and B be two

normal subsets of a 2-simplex A2 which are in general position. Then the

regular exchange at A f)B yields a family ofpairwise disjoint elementary arcs.

It can be straightened to a normal subset of A2 ; this is denoted by A\t)B and
Called the geometric sum of A and B. Moreover.; if \ • „ e N U {oo} denotes

the number of normal arcs dual to vertex ü of A2, then |At£lB|„ |A|„ + [I'jp,

Proof. Choose discs for the regular exchange at AHB, and hence two
circular arcs at each intersection point determined by the switch condition.
These discs and arcs will be fixed throughout the proof; the set of circular
arcs is denoted by C. Since A and B are normal subsets, the normal subset

Aq consisting of all normal arcs a C A with the property that a meets an

arc in B not normally isotopic to a is finite. Define Bo C B analogously.
Assume that some arc in Ao meets an arc in B„ which is not normally
isotopic to it. The properties that will be used are the following: (1) each

connected component of % (resp. B0 is an elementary arc which is made

up Of straight subarcs of arcs in AUB and circular arcs in C; (2) the arcs
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in A(t (resp. Bq) are pairwise disjoint; (3) whenever an elementary arc in A0

meets an elementary arc in B0, then they meet in a single point, and the

corresponding regular exchange can be done by deleting subarcs from AliB
and inserting arcs from C.

Denote the vertices of A2 by x,y,z and the opposite edges by
respectively. Label the normal corners of elementary arc a dual tö n by ti.
For each side of A2, this gives a finite word in the labels. Consider the side %,

If some arc dual to x meets an arc dual to y, then on read from x to y,.
the word has the form wa(x, y> < y • (%}'} • x • Consequently, if the

word is of the form x"ym, then there are no intersections between arcs dual

to x and arcs dual to y. Assume that there is some point of intersection. Then

the word contains the subword yx. Since arcs in A() are pairwise disjoint, the

two labels do not correspond to endpoints of two normal arcs in Aq Similarly
for Bo. Without loss of generality, assume that y is the label of an endpoint
of a c Aq and x is the label of an endpoint of b c Perform the regular
exchange at aflb using circular arcs from C This yields two elementary arcs,

one containing a portion of b between Sy and tire intersection point as well
as the corner ony. This elementary arc, denoted by bo, has the property that

bon(fio\b) i= 0 as well as bofiAo (b nAo)\(an b). Moreover, the switch
condition at any point of boflAo coincides with the switch condition at that

point with respect to b, since bo and b are normally isotopic. In particular,
it can be realised using circular arcs from C. Moreover, any elementary arc

met by bo has at most one point of intersection with it since none of the
subarcs in which bo and b differ meet any other arc. The same discussion

applies to the other elementary arc, do, arising from the regular exchange.
Let Ai be the collection of elementary arcs obtained from Ay by deleting a

and adding ao, and define Bi likewise. Then [Ao|0 + |$o|t> - |Ai|o + |Si|„
for each a G {.v.y..:}. |Ai| [A0|, \Bi \ — |B0|. |Ai nßi| |A0n.Bo| - 1 and

Ai and B\ satisfy the above properties (1)—(3). It follows that this process
can be iterated to yield two normal subsets At and B,t with the property that

|«%j »= |Ao|, {S»I |ßo|. and whenever arcs in % and Bk meet, then they
are normally isotopic. Moreover, tire number of arcs dual to x (resp. y, z) in

Ak y Bk equals the number of normal arcs in A0 dual to x (resp. y, z) plus
the number of normal arcs in B dual to x (resp. y,z).

Letting A' (A \ A0) U Ak and B' — (B \ B0) U Bk gives sets with the

property that each point in A' H B' is the intersection point of normally
isotopic arcs ; A' and B' can be viewed as obtained by performing all regular
exchanges at all points in A n B corresponding to intersection points of
arcs of different normal types. Let Ax and Bx be the sets of all elementary
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arcs dual to x in A' and B' respectively. The elementary arcs in Ax can

be labelled oo,ai,... with the property that Cao 3 C0l D Similarly
for Bx.

Since A and B are in general position, the intersection points of Ax U Bx

with the side sy (resp. sz) can be labelled y\,yz, • •• (resp. z\,Zz, • • • such

that (yi,x) C (Aj-b*) (resp. c (z;_i,L)) for each i > 1. It now
follows inductively that performing all regular exchanges at Ax n Bx yields
a union of pairwise disjoint elementary arcs {n,} with n; having endpoints
V; and Zi The resulting number of normal arcs dual to x is thus uniquely
determined by the intersection points with the 1-skeleton. Whence the claimed

relationship.

If follows that performing all regular exchanges at A HB yields a union of
pairwise disjoint elementary; it can be pulled straight to a union of pairwise
disjoint normal arcs, AtpB. The other parts of Definition 1.20 are verified as

follows. We have (A WB) n A2® (AnA^'jUfSnA2'15), whence the set of
limit points Of 04 l±l B) n A3?1 is contained in A2® *

It follows from Definition 1.20 that for each vertex o there is a

neighbourhood Nv with the property that N„ only meets normal arcs dual

to o in A U B. It follows from the construction that <V\, can be chosen such

that it meets only normal arcs dual to 0 in AitiB. Thus, AWß is a normal
subset of A2.

The method of pre-assigning switch conditions at intersection points fails

for certain immersed sets of normal arcs. Assume A {a,} is a set consisting
of three normal arcs on a 2-simplex A2 which are pairwise in general position
and no two of which are normally isotopic. Then for any distinct üi,aj G A,
the regular exchange at a; n a,, is defined.

However, if all these regular exchanges are performed, then the result may
not be elementary ; Figure 4( a) shows a constellation where this fails. However,

we have (aqfiJaifitJcL — aqttfiai thai) (ooöaqjöai even though intersection

points are possibly resolved differently. See Figure 4(b) and notice that the last

picture is invariant under rotation by =f whilst the first and second are not.

Lemma 1.23. Let A,B,C be three normal subsets of a 2-simplex which

are paimise in general position. Then A Î|1 (B ij f (A ü B) Ç,

Proof. Let A' be the set of all normal arcs in A which meet normal arcs

of different types in B or C ; define B' and C' similarly. Then the previous
lemma applies to show that A' til (B' H C') and (A' LI /#' til C' are normal
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(a) Regular exchange of immersed may not be normal

(b) Geometric sum is associative

RGÜRE 4

subsets with the property that for every vertex u,

\A'W{B'WC% \A'\V + \B'VC'\„
— Ifl'l« + 4- \C'\0

\A'\äB'l + \C'\v \(A'ttB')WC'U.

Whence A'öfB'tijC") and (A'yZt'töC' are identical, since they have identical
intersection with the 1-skeleton.

It remains to analyse arcs which are pairwise in general position and dual

to a common vertex. Here the switch conditions at intersection points are

uniquely determined regardless of the order in which regular exchanges are

performed. The lemma follows.

Given two normal subsets A and B on a triangulated, compact surface,

let

(AnA2]W(BnA2)
A2

where the union is taken over all 2-singIices in the triangulation. Then AWB
is a well-defined normal subset.
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Lemma 1.24. Let A and B be Wo finite unions of paimise disjoint
normal curves on 0A3 with the property that for each face Â2, the sets

A h A2 and B n A2 are in general position. Then C — Aö B is a finite
collection of normal cun>es. Moreover, if A and B only contain curves of
length three or four, and each curve of length four does not meet the same

edge A1 of A3, then C contains only cun>es of length three or four and each

cun'e of length four does not meet A1.

Proof The statement follows from Corollary 1.7 and Lemma 1.22.

By assumption, one may normally isotope A to a normal subset A' which
is disjoint from B. Then the intersection of A' U B with the 1-skeleton is

normally isotopie to the intersection of Au B with the 1-skeleton. It follows
that A' U B is normally isotopie to A'\HB.

1.8 Regular exchange and geometric sum : Normal discs

Definition 1.25 (General position). Two normal subsets S and F of
a 3-simplex A3 are said to be in general position if S n F n A3'-1-' 0,
In particular, for every face A2 of A3, the normal subsets S ClA2 and F n A2

are in general position.

Let bn and be two normal discs in a 3-simplex A3 which are in general

position. A geometric sum of bo and bi should restrict to the geometric sum

of 0bo and 9b ; and yield two normal discs. Whence each normal curve in

9öol4i0öi should have length three or four. It follows that bo and bi cannot
be quadrilateral discs of different types since otherwise dbotelibi is a single
curve of length eight.

Hence assume that if both bo and bi are normal quadrilaterals, then they
are normally isotopie. Also assume that a — bofWi 0. Recall the definition
of a normal disc as the cone to the barycentre of its vertices. Any normal

triangle is a flat Euclidean triangle, and a normal quadrilateral is made up of
(at most) four Euclidean triangles. The incidence between two normal discs

does not change under a normal isotopy of their union, so to determine the

possibilities for a, it may be assumed that if bo is a normal quadrilateral,
then it is flat.

It follows that if not both bo and bj are normal quadrilaterals, then a
is a properly embedded arc in each disc and necessarily has endpoints on

distinct faces of A3. If both discs are normal quadrilaterals, then a cannot
contain a connected component not meeting 0A3 for otherwise b0 would

separate the vertices of bj from the barycentre Of bi. Moreover, a meets
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A'
À

(a)

Figure 5

Regular exchange of normal discs (not shown are the two
possible intersections of two quadrilateral discs in one arc)

9A3 in either two or four points. It follows that a is either a single arc,
the disjoint union of two arcs, or a cross; each properly embedded in A3.

In particular, the above definition allows a piecewise linear analogue of saddle

tangencies.

Let N0 be a regular neighbourhood of a in A3. A regular exchange of
% and öi at a consists of deleting the portion of ö0Uöi in Na, and adding
discs contained in the complement of önUöi on d(Nn) as follows.

If bo and öi are normal quadrilaterals, then let Xq and Ig be the

connected components of A2\(ÖoUöi) containing 1-simplices, If Öo and

Öj are a normal quadrilateral and a normal triangle, let X0 (resp. X\ be

the component containing a 1-simplex (resp. the vertex dual to the triangle).
If 5o and öi are normal triangles of the same type, let Xo (resp. X\ be

the component containing a 2-simplex (resp. the vertex dual to the triangles).
If ön and Ö! are normal triangles of the different types, let Xq and X\
be the components containing the vertices dual to the triangles. Then let

C= (ZoUAi)fl9Aa.
It follows that ((öo U öl) \ Na) U C is a union of two disjoint elementary

discs which can be straightened to give two disjoint normal discs, denoted

by öo y öi, and the restriction of C to each face coincides with the switch
condition at each endpoint of o on that face. For each connected component
a' of a, the placement of tire discs in dNa' is termed the switch condition

at a'.
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Definition 1.26 (Compatible normal subsets). Two normal subsets S

and F of P are compatible if tlrey are in general position and if the normal

quadrilaterals in SnA3 and FflA3 are all of the same type for each 3-singlex
A3 in P.

The above definition of regular exchange extends to a regular exchange at

S n F where S and F are compatible normal subsets. It remains to show that

the result (after straightening) is a normal subset.

For the proof of the lemma below, it is necessary to extend the above
definition of regular exchange to elementary discs ö« and St in the 3-simplex A3

subject to (1) ÖQ;fTc>i n A3ll) 0, (2) if one of the discs has three corners,
then they have precisely one arc of intersection with endpoints on different

faces of A3, and (3) if both elementary discs meet the 1-skeleton in

four normal corners, then the discs are normally isotopic and have
intersection consisting of either one or two arcs or a cross and no two end-

points of t>g D bi are on the same face of AJ, This generalisation is

straightforward; it should be noted that in the realm of elementary discs,
saddle tangencies can be eliminated by an arbitrarily small isotopy fixing

<9A3.

Lemma 1.27 (Geometric sum of compatible normal subsets). Let S and F
be compatible nonnal subsets of a 3-simplex A3. Then the regular exchange

at S /•' yields a family of pairwise disjoint elementary discs. It can be

Straightened to a nonnal subset of A3; this is denoted by StfiF. Moreover.;

the number of discs in SWf of any type equals the sum of the number

(possibly infinite) of the discs ofthat type in S and F.

Proof. The structure of tire proof is as in Lemma 1.22, and only an

outline is given. Let So be the set of all normal discs in S meeting normal
discs in F of a different normal type; define F(s analogously. Then So and

Fq are both finite (possibly empty) sets of normal discs.

Let A1 be an edge of A3 and denote its vertices by u and tu. Choose

an ordering of the faces A3 and Àf incident with A1. A normal triangle
dual to o (resp. tu meets each face in a D -type arc (resp. ru -type arc),
and a normal quadrilateral with a corner on A1 meets one of the faces

in a v Type and the other in a tu-type arc. With respect to the ordering,
the corner of a normal disc on A1 is labelled by (o,o), (o,tu), (tu,o)
or (tu, tu) accordingly. Since S and F are compatible, the corners of all

quadrilaterals have the same label, say (o,tu). Read from o to tu, this
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gives a word of finite length in these tuples, and if no disc meets a disc

Of different type, then the word has the form m. ti t"m. m s" un. m t. where

n, m, I > 0.

Given a word not of this form, as before, an inductive argument
allows to successively perform regular exchanges which move: a pair

(0,0) to the left or a pair (ro,ro) to the right. Having done this for
all edges, it follows that whenever two discs meet, then they are of
the same type. The proof is now completed similarly to the proof of
Lemma 1.22.

Lemma 1.28. The geometric sum of compatible normal subsets of P is

well-defined and associative.

Proof. Let S and F be compatible normal subsets of P. Then for each

3-simplex A3 in A, p~1(S) flA3 and p~l(F) fiA3 are compatible. It follows
that the geometric sum p~l(S)\t)p~1{F) is well-defined. Since the definition
of regular exchange between normal subsets of a 2-simplex is defined without

reference to a 3-simplex, it follows that p ^p~1(S)\Bp~1(F)j is a well-defined

normal subset of P.

This has the following, classical, consequence:

Corollary 1.29. Let S and F be two normal subsets of P which are

in general position, and let f be a simple closed cun>e in SHF. Then 7 is

either 2 -sided in both S and F or it is 1 -sided in both S and F.

Proof. If 7 is non-separating in S, but not in F, then tire switch condition
at an intersection point of 7 with the 2-skeleton changes upon a full traverse

of 7. But this is not possible.

Lemma 1.30 (Additive identity). If a nonnal subset S in P contains

infinitely many normal triangles dual to 0 e P(0), then S 1+) /i;n is normally
isotopic to S.

Proof. The intersection Sr\B„ consists of at most finitely many pair-
wise disjoint simple closed curves and arcs. Since Bv contains only normal

triangles, it follows that S ttl and S satisfy the hypothesis of
Lemma 1.19.
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1.9 Boundary curves of spun-normal surfaces

Let S be a normal subset in P which is transverse to Bw for some

o e FM. It may be assumed that N0 meets only normal triangles in S and

that S and B„ are in general position. Note that S and Bv are compatible,
and that S n B„ is a finite union of pairwise disjoint simple closed curves or
properly embedded arcs. Since Bv is 2-sided in P, it follows that SCiBv is

2-sided in S and hence, by Corollary 1.29, S n Bv is 2-sided in Z?0. This

implies that S ft ß„ can be given a transverse orientation in Bv, and we will
make the following canonical choice.

Since N„ is the cone over Bv on o, it inherits a triangulation which is tire

cone on d over the triangulation of B0. Moreover, S n N0 is a normal subset

in Nv with respect to this triangulation. Any normal disc n in Np contained

in the 3-singlex A§ in N0 inherits a well-defined transverse orientation by
assigning +1 to the component of int(A„)\n containing ö. These orientations
match up to give Sf~)Nv a transverse orientation, and SC\BV is given the induced

transverse orientation. In particular, this shows that S(1NV is 2-sided in N„.

Lemma 1.31 (Boundary curves are non-separating and 2-sided). Let S be

a noma! subset in P. Each cun>e or arc in Anßa is 2-sided in B„ and in S.

Up to nonnal isotopy of S, one may assume that SnBv is a (possibly empty)
union of pairwise disjoint, non-separating, 2-sided simple closed curves or
properly embedded arcs on Bv.

Proof. It remains to show that each component of SnBv is non-separating
in Bv. If S contains at most finitely many normal discs dual to u, then there

is a normal isotopy of S making S disjoint from Bv, and there is nothing
to prove. Hence assume that S contains infinitely many normal triangles dual

to u. To simplify notation, let B — Bv.
Let r be a connected component of S HB. Perform the regular exchange

at c and denote the result by S(c). If c is separating in B, then there are

subsets of S(c) corresponding to the components B+ and ß_ of B \ c and

there is a normal homotopy of S(c) which pushes one of these subsets towards

v and the other out of N0 so that the result, also denoted by S(c), is transverse

to B and meets B in one separating curve fewer than S.

Performing regular exchanges along all singular curves in S(cj yields a

normal subset I'(c) with the properties that S'(c) D B S(c) H B and S'(c)
is normally isotopic to S ttl B. Hence S'(c) is normally isotopic to S by
Lemma 1.30. Since S HB has finitely many connected components, one may,
by induction, assume that no component of SH B is separating.



NORMAL SURFACES IN TOI'Ol OCR'AI I Y FINITE 3-MANIFOLDS 351

Corollary 1.32 (Spun-normal surface normal surface in a manifold).

If P is a 3 -manifold, then every connected component of a normal subset is
a nonnal surface.

Proof. This follows from the above lemma since if P is a 3-manifold,
then every vertex linking surface is a sphere or disc.

1.10 The ORIENTABLE. DOUBLE COVER

If P is non-orientable, denote by P the orientable double cover of P and

by If, a connected component of the pre-image of If, for each u e
A spun-normal surface S c P lifts to a spun-normal surface S c P which is

invariant under the non-trivial deck transformation. Either P or P is given a

fixed orientation.

Each boundary component can be given a transverse orientation by choosing
a normal vector pointing towards the dual 0-singlex. It is then oriented such

that the tuple (orientation, transverse orientation) agrees with the orientation

of the ambient pseudo-manifold.

1.11 The boundary curve map

A transversely oriented normal curve on Bx, defines an element in

Hi(Ba,dBxx;Z) as follows. The triangulation of Bv can be given the structure

of a A'Complex (see [7], Section 2.1). Thus, each edge in the triangulation
öf Bxx is given a well-defined direction, and can be used for a well-defined

simplicial homology theory. If B„ is non-orientable, denote by B0 the chosen

lift in the double cover ; otherwise let Bv. Recall that Bv is oriented.

Let a be a transversely oriented normal curve on Bxx, and consider its

pre-image 5 in Bx,. Using the transverse orientation and the orientation of B„,
give o an orientation such that the tuple (orientation, transverse orientation)
associated to n agrees with the orientation of Bv. Then homotope à in the

direction of the transverse orientation into the 1-skeleton of Bv. Using the

orientation gives a well-defined element of Zi(B0,dBXJ), and hence an element

of Hi(Ba, dB0). This maps to a non-torsion element ä E H\(Bnt&Bn^ since

a is 2-sided on One may therefore view i £ H\(B0, dBv ; Z) and let

Ô0(A) ^ïï£//1(B0,ÔB„;Z)î

where the sum is taken over all connected components of B^DS.
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Lemma 1.33 (Boundary curves are well-defined). Let S0 and Si be

normally isotopic nonnal subsets of P. Then if.iS. - dv(Si). Moreover
dv(S) is trivial if and only if SCiB„ may be assumed empty.

Proof A dual statement will be proved. It suffices to assume that
is orientable. Let lj and Bi be two vertex linking surfaces normally

isotopic to Bv and meeting S transversely in normal triangles. The normal

isotopy gives a canonical identification Hi(B„,dB„:Z) Hi(Bk,dBk;Z).
Denote the corresponding families of transversely oriented intersection curves
by Ck. Then B0 and B\ bound a submanifold X of P homeomorphic to

Bp x [0,1]. The surface SfiA is given a well-defined transverse orientation

using the construction in Subsection 1.9 which proves that S n N0 is

2-sided. It follows that its set of transversely oriented boundary curves
is precisely the union Co U C\, which therefore determines an element of
BfB»,dBv-Z).

The argument given in the last paragraph in the proof of Lemma 1.31

is now adapted to prove the second part. Let B — Bv. Assume there is a

subset C of S n B with the property that there is a subsurface B' of B with
dB' — C and B' is on the positive side of each component of C. Then the

cited argument can be applied with B+ — B' and B\B' to show that
the components in C can be deleted from 5flfi by a normal isotopy. This

completes the proof.

Corollary 1.34. A .spun-normal' .surface S spins into ö e Pm if and

only if d„(S) / 0.

1.12 THE SPINNING CONSTRUCTION

An interesting normal subset in (VD is constructed as follows (this

generalises the construction of an infinite normal annulus in |>'|

Let C be a finite collection of pairwise disjoint, transversely oriented,

non-separating normal curves on Bv with the property that the intersection
with every normal triangle in Bv consists of k copies of a normal arc dual to

a corner co with transverse orientation pointing towards en, and 1 copies of a

normal arc dual to q ^ Co with transverse orientations pointing away from q ;

both i, 1 are non-negative integers. For instance, the system of transversely
oriented normal curves in S n B$ is of this form.

Let {j5;}, i N, be a countably infinite family of vertex linking surfaces

dual to 'V in Nv such that (J is a normal subset. On each 5;, there is

a copy, Ci, of C. For each i and for each Cj e C, delete a small open
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neighbourhood of e,- in B,. Since a separates its neighbourhood, label the

boundary component in the positive direction by âf, and the other by cf
Since there is a normal isotopy of Nv taking ff to for each i and

each c, they can be joined by an annulus in Nv. Similarly, annuli can be

attached between c and c+ for each c C. There is a normal isotopy fixing
iVp1

'

such that the result is a normal subset of N0 ; this is said to be obtained

by spinning on C.

Lemma 1.35 (Controlled spinning). Deleting SnN„ from S and attaching
the result ofspinning on SOB0 (with the induced transVerse Orientation) yields
a normal subset which is normally isotopic to S.

Proof. Delete the portion of S in N„ and replace it by a normal subset in

,V„ obtained from the spinning construction on SPiBv, where each component
is spun in the +1 direction on B0 according to the convention in the proof
of Lemma 1.31. The result meets each 3-singlex in elementary discs and

straightening gives a normal subset S' in P with the property that S and S'

satisfy the hypothesis of Lemma 1.19. It follows that S and S' are normally
isotopic.

Corollary 1.36. Let S be a spun-nomal surface which spins into
u g PW). Then X'(5D) < 0. If \'ÇBn) < 0, then S is topologically infinite.

If — Ö? Mten S is homeomorphic to the interior of S ri(P\N„) for
suitably chosen Nv.

Proof. Assume that S spins into D. If \ > 0, there are no 2-sided,

non-separating curves or arcs on Bv and S cannot be spun into u. Hence

X{BV) < 0. Since S can be viewed as obtained from the spinning construction,

one has

OC

x(S)<x(snpc) + J2x(B„)
i— 1

for suitably chosen Pe. So if xiBf), < 0, then S is topologically infinite.

If 0, then Bv may be chosen such that S<1B„ contains no collection

of curves which is liomotopically trivial. It follows that S n N„ consists

of properly embedded half-open annuli (i.e. annuli having one boundary curve

removed) or discs with one point on the boundary removed meeting Bv along
a boundary arc.
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1.13 KNESER'S LEMMA FOR SPUN-NORMAL SURFACES

Lemma 1.37 (Kneser-Haken finiteness). Let P be a triangulated pseudo-

manifold (possibly with boundary), and S be a spun-normal, surface such that

no tw>o components of S are normally isotopic and no component is a vertex

linking surface. Then the number |S| of components of S satisfies |S| < 121

and

(1.1) [iSj < 3;- dim//•</> A)/':Z:) 3;- dim//.(/' :Z.^}.

Moreover; if S is 2-sided, then |S| < 61 and |5| < 3t+^ dim H2(Pc, dPc;Z2),

Proof. Whenever S does not spin into tu one may add Bv to S disjointly
since no component of S is a vertex linking surface; the result is again denoted

by S. The normal discs of p_1(S) divide a 3-simplex in A into the following
types of regions :

1. slabs: trivial /-bundles over normal discs,

2. thick regions : truncated tetrahedra and truncated triangular prisms,
3. vertex regions I "small" tetrahedra which contain a vertex of T.
In total, there are at most v + 21 components of P\S which contain the

image under p of at least one of the latter types of regions. The remaining

components of P\S are entirely made up of slabs.. Each such slab component
is either a trivial or a twisted /-bundle over a spun-normal surface.

If it is a trivial /-bundle, then there is a 2-sided surface in S which
is the boundary of a twisted /-bundle over a 1-sided surface in S (since
otherwise there would be two normally isotopic components of S). All other

slab components are twisted /-bundles over a spun-normal surface not in S.

Since this core surface is not normally isotopic to any of the components
of S, we may add it disjointly to S. Let F be a 1-sided component of S.

A small regular neighbourhood of F is a twisted /-bundle with boundary a

2-sided spun-normal surface, A, in P. If A is not normally isotopic to a

component of S, we join it to S.

Let {L;} be the set of all vertex linking surfaces in S, {F,} be the set of
1-sided surfaces, the set of corresponding 2-sided surfaces be {A}, and the

set of all remaining 2-sided surfaces be {&}, Then |{F,}[ |{A,}|. Note that
Pc may be chosen such that the intersection of each component of S with it
is connected. Let Sc — SCiPc, and similarly for its components. Each Ff is a

1-sided and therefore non-separating surface in Pc. Since Ff is 1-sided, there is

a closed loop in a small regular neighbourhood of Ff meeting Ff transversely
in a single point. Using the intersection pairing with Z2 coefficients, it follows
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that Jf determines a non-zero element of H2(Pc, dPc\ Z2) and that {F-} is

in bijective correspondence with a linearly independent set of elements of
H;iPA)p-.Z;\.

Assume S' is a 2-sided component of S which is not a vertex linking
surface and meets no thick region. Then S' bounds an /-bundle to either
side. If one of them is trivial, then there is a component in S which is

normal isotopic to S'. Hence both of these /-bundles are twisted. But then P
is decomposed into two twisted /-bundles glued along their boundaries, and

S — S' does not meet any thick region. This is not possible. So each element of
{A;}U{Si} meets at least one thick region. There are at most 61 normal discs

in the boundaries of thick regions. Each surface in {A}U{S;} meets at least

one thick region in at least one disc. This implies that |{AV}|-+ [{S;}| ^ 6f.
Thus |{F;}| < 61, and the first bound is obtained.

We now use a doubling trick from [1], Each N, meets thick regions

only on one side, and each I| meets at least one thick region on each

side. Push each Ni off itself away from the twisted /-bundle, and call
the resulting copy N[, and push each off itself and call the resulting

copy S'i. This can be done such that all surfaces are still pairwise disjoint.
Each surface in {A'} U {5,} U {5,'} meets at least one thick region in

at least one disc. Thus, 2|S| 2|{V;}| + 2\{Fi}\ + 2|{A;}| + 2|{A,}|
2|{E;}| + 3|{/j}| + KA.Il + ip}! < 2|{V;}| + 3dimff2(/* 3Pe;Z2) + 61.

Dividing by two and subtracting the vertex linking surfaces gives the second

inequality. The stated equality follows since Lefschetz duality and the universal

coefficient theorem yield H2(PC, dPc\ Z2) //;(/'' : Z

1.14 Normalising properly embedded surfaces

Haken's approach to normalising properly embedded closed surfaces as

described in Chapter 3 of [10] applies to ideal triangulations without change.

However, it does not apply to properly embedded non-compact surfaces;

an obstruction for putting such a surface into spun-normal form is, for instance,

given by Corollary 1.36. Moreover, it is shown by Kang [8] that there is an

ideal triangulation Of the complement of the figure eight knot with two ideal

3-simplices, such that no Seifert surface for the knot can be put into spun-
normal form (see also Section 4.2). A result due to Thurston (see Walsh [13])
states that essential surfaces other than virtual fibres can be normalised in any

hyperbolic 3-manifold with torus cusps and ideal triangulation with essential

edges. A general theory of normalisation with respect to ideal triangulations
is implicit in the work Of Brittenham and Gabai [6],
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2. Matching equations

A normal subset S is (up to vertex linking components and normal isotopy)
uniquely determined by its quadrilateral discs. Recording the number of
quadrilaterals of each type gives the normal g-coordinate of S. This satisfies

two necessary conditions : (1) it is admissible, and (2) it satisfies a Q-matching
equation for each edge not contained in the boundary of P. This equation
is given by Tollefson [12] for compact 3-manifolds, The main result of this

section (Theorem 2.4) states that, conversely, any admissible solution to the

g-matching equation is realised by a spun-normal surface which is unique up
to normal isotopy.

2.1 Normal g-coordinate

There are t 3-singlices in P. Let {q\,..., qst} be the set of all quadrilateral

types in P. A normal subset S in P meets each 3-singlex in at most

finitely many quadrilateral discs of each type. If M is the number of
normal quadrilaterals of type qit then let N{S) — (Xi,. .,x3r) be the nortnal

Q-coordinate of S. Thus, N(S) is a well-defined point in R3' with tire

coordinate axes labelled by the quadrilateral types. A point (xi,.. .,x3r) G R:

is called admissible if each x,- > 0 and if qi,qj,qt are the three distinct
quadrilateral types contained in any 3-singlex, then at most one of Xi,Xj,Xk
is non-zero. The cell structure of S allows normal quadrilaterals df at most

one quadrilateral type in each ideal 3-singlex, and hence N{S) is admissible.

2.2 Convention for oriented 3-simplices

Let A3 be an oriented, regular Euclidean 3-simplex. The edges of A3

are labelled with parameters z,z',z", such that opposite edges have the

same parameter, and the ordering z,z',z" agrees with a right-handed screw
orientation of A3 ; this is pictured in Figure 6. It follows that the labelling
is uniquely determined once the parameter $ is assigned to any edge of A3.

The vertices of a normal triangle dual to a vertex of A3 inherit moduli from
the edge parameters; this labelling is always viewed from the vertex.

There are three quadrilateral types in A3 ; let q<k) denote the quadrilateral

type which does not meet the edges labelled z® for k e {0,1,2}. The

symmetry group of A3 is the alternating group on its four vertices. It contains

a normal Kleinian four group which leaves pairs of opposite edges invariant
and hence fixes quadrilateral types. The quotient group is Z3 ; it may be

identified with the group of even permutations of the three quadrilateral types,
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FIGURE 6

Edge labels, quadrilateral types and Q-moduli

and is hence generated by tire cycle it — (q, q\q"). If p and q are quadrilateral

types in A', let:

Sp(q) — k if irk(p) — q for k g {—1,0,1}

An isometry ip\ Ag —> Af between oriented 3-siinplices induces a bijection
between quadrilateral types, and one has sp(q) — if §? is orientation

preserving, and sp(q) —otherwise. The above extends to normal

quadrilateral types in an oriented 3-singlex since the quotient map from a

3-simplex to a 3-singlex induces a bijection between normal quadrilateral
types.

2.3 DEGREE AND ABSTRACT NEIGHBOURHOOD

The degree of a 1 -singlex A1 in P, degfA1), is the number of 1-simplices
in A which map to A1. Given a 1-singlex A1 in P, there is an associated

abstract neighbourhood B(A1) of A1 which is a ball triangulated by degfA1)

3-simplices with the property that there is a well-defined simplicial quotient

map pAi : B( A1 J P taking A1 to A1.

If A1 has at most one pre-image in each 3-simplex in A, then -BtA1)

is obtained as the quotient of the collection Aai of all 3-simplices in A

containing a pre-image of A1 by the set Oai of all face pairings in O
between faces containing a pre-image of A1. There is an obvious quotient

map b&i : BiA1) —> P which takes into account the remaining identifications

on the boundary of B(A1).

We now describe -BfA1) if A1 has more than one pre-image in some

3-simplex. In this case degtA1) > 1. For each 3-simplex Aju if A1 has k

pre-images in Aj\ take k copies of this 3-simplex, À|j,...,A?k, each with

an isometry : Aj —? Ajh. To each pre-image A1 of A1 in M assign one of
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the maps ijj, and call ijjfA1) the: marked edge of Aj;i. This gives a collection

Aai of degfA1) 3-simplices.
A face pairing xp of faces of Aj and A| gives rise to a face pairing

between faces of Aj3 and A^ k if and only if it identifies the edges of M and

A| corresponding to the marked edges of Aj3 and Af^,,. Denote tlie resulting
set of face pairings by ®Ai.

The quotient map is denoted by pAi: Aai -a Aai/Oai BiA L

If degfA1) >1 or if A1 c ÔP, then the triangulation of -BfA1) is simplicial.
We now describe the map bAi in the case where A1 has more than one

pre-image in some 3-simplex. Since degfA1) > 1, the given triangulation Of

BfA1) is simplicial and hence for each simplex Ajh in BfA1) the inverse p~}
is well-defined. Since the face pairings defining BfA1) arise: from the face

pairings in <t>, the map pAi : BfA1) —> P defined by p a çj o p~j : Ajh -+ P

for each 3-simplex is well-defined.
The unique edge in BfA1] which is the image of all marked edges is termed

the axis of BfA1). One of the endpoints of tire axis is termed the north pole
and the other the south pole. The set of all 1-singlices not containing a pole
is termed the equator of BfA1). See Figure 7(a).

Lemma 2.1. Let S be a normal, subset of P. Then pAil(S) is a nonnal
subset of BfA1).

Proof. The set p~l(S) is a normal subset of A with the property that
whenever a c p~1(S) is a normal arc on a 2-simplex in the range of some
face pairing (p e then ip(a) C p~l{S). The result now follows from the

definitions of Aai and ®Ai.

Lemma 2.2. Any normal subset in BfA1) is a (possibly infinite) union of
pairwise disjoint properly embedded dises in BfA1).

Proof. This follows from the fact that BfA1) is a manifold and from
Corollary 1.32.

2.4 Slopes of quadrilateral types

Let A1 be a 1-singlex not contained in dP. The abstract neighbourhood
BfA1) of a 1-singlex A1 in P is a ball and hence the 3-singlices in BfA1) may
be oriented coherently. In particular, the convention of Subsection 2.2 applies
to each oriented 3-singlex in BfA1). To simplify notation, write e — A1. If p
is the type of a normal quadrilateral in the oriented abstract neighbourhood
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B(e) which does not meet the axis e', let se(q) — $p(q) for any quadrilateral

type q in the same 3-singlex as p. This gives a function & defined on the

set of all quadrilateral types in B(e), and the value se(q) is termed the slope

of q with respect to e. The two quadrilateral types in a 3-singlex meeting e'

have slopes of opposite signs, and a quadrilateral type which does not meet e'

has slope zero. See Figure 7(b), where the shown 3-singlex is oriented using
a right-handed screw orientation.

The orientation of B(e) induces an orientation of its hemispheres, and the

equator will be given the orientation induced from the southern hemisphere.

If D c B(e) is a properly embedded disc such that the poles are contained
in different components of dB{e) \ dD, then dD is given the orientation
induced from the component containing the south pole. BP P is a point in
the intersection of dD and the equator, let s(P) — 1 if dD crosses the

equator from the southern to the northern hemisphere at /*, and let s(P) -1
otherwise. Thus 0 J2S(P)> where the sum is taken over all points in the

intersection of dD and the equator; the empty sum is defined to be zero

throughout.

Now assume that D is a connected normal surface in B(e) which meets e'.
Then D is a disc; it is the join of dD to DCie'. In particular, dD is a normal

curve separating the poles on 3B(e) and D meets each 3-singlex in exactly
one normal disc. The boundary of a normal triangle in D does not meet the

equator, and a quadrilateral disc of type q in D contributes two normal arcs

to its boundary which meet in a point P at the equator. The above conventions

imply that s(P) — sè(q). Thus, V jy(g) — 0> where the sum is taken over all

quadrilateral types in D. If D is any normal subset in B(e) which does not
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PIOÜRE 8

B(A1) cut open along pAt(A~)

meet e', this equation is trivially satisfied since a quadrilateral disc meets the

equator if and only if it has a vertex on e'.
Note that the equation is well-defined up to sign since reversing the

orientation of -BfA1) changes the sign of the slope of each quadrilateral
meeting A1. If A1 is contained in ÔP, then define s&i(q) — 0 for each

quadrilateral type in BfA1).

Lemma 2.3. A normal subset S t Aai which contains infinitely many
normal triangles of each type can be normally isotoped such that ps (S\ is

a normal subset of BfA1) if and only if where xq is the

number of normal quadrilaterals of type q in pAi(S).

Proof It follows from the above discussion that the equation is a necessary
condition, and it remains to show that it is sufficient. Given two 3-simplices
in Aai the pattern on each face is the same : there are three: countably infinite
stacks Of parallel copies of normal arcs. Fix the discs of S in one 3-simplex A3.

If there are no face pairings for faces of A3, then BfA1) A3 and there is

nothing to prove.
Next assume that there is precisely one face pairing, <px, involving faces

of A3. Then the equation is trivial. Let A^ be a simplex with one face A2

in the range or domain of %pi. Then there is an ideal normal isotopy of A|
which fixes all subsimplices not in A2 such that pj matches the normal arcs

on A2 bijectively with the normal arcs on its counterpart. If there are no
other face pairings involving A§, we are done. Otherwise: there is exactly one

other face pairing, and the above procedure can be iterated. It terminates after

degfA1)—1 steps.

Hence assume that there are two face pairings for the faces of every
3-singlex. Then the equation is non-trivial. Ignoring one of the face pairings,
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pg, for faces of A3, one can proceed as in the previous paragraph. Denote by
AI the last simplex in the iteration, and assume that yu(A2) A|, where A2 is

a face of It follows from the construction that SiTAf can only be altered by
a normal isotopy which fixes all edges of Af other than the non-marked edges

of AI ; see Figure 8. To obtain a normal subset of IX A the normal arcs dual

to the vertices not contained on the marked edges on A2 and A| have to be

identified in pairs, and this determines a unique bijection between the normal

corners on the edges which are not marked. This bijection determines a unique
normal isotopy of S n Af such that equivalent corners have the same image
under pAi. Note that p&0) n dB(Al) is a normal subset.

If pAt(S) is a normal subset, then pA\{S) HIXA s is a countably infinite
union of circles and the equation 0 is satisfied. Assume that

pAi{S) is not a normal subset. Then some component of pAi(S) n dB(A1)

crosses the equator an odd number of times, and, since pAi (S) n dB{ A1 is

properly embedded in dB(A1) minus the poles, it follows that jQ®Ai(qyWg §£ 0.
This proves the lemma.

2.5 The Q-matching equation

For each 1-singlex A1 in P, the total slope with respect to A1, sAi(q), of
a quadrilateral type q in P is defined to be the sum over all pre-images of
q in B(A1) of the signs of their slopes. If S is a normal subset Of P, then it
follows from Lemma 2.3 that the normal Q-coordinate N(S) — (x\, ,%;)
of S satisfies a linear equation for A1, called the Q-matching equation of A1 :

3 r

0 £ sAi(qi)Xi.
Z —1

This equation is well-defined up to sign since reversing the orientation of
BiA1) changes the sign of the slope of each quadrilateral meeting A1.

Theorem 2.4. Let P be a triangulated pseudo-manifold. For each

admissible integer solution N of the Q-matching equations there exists a

spun-normal surface S in P with no vertex linking components such that

N(S) — N. Moreover, S is unique up to normal isotopy.

Proof. It suffices to show existence; uniqueness follows from Lemmata

1.15 and 1.19.

Recall that there is a bijective correspondence between normal disc types in
A and P. Given an admissible integer solution (.Ti,...place Xi pairwise
disjoint normal discs in A each of which maps to a normal disc of type
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qi in P. Then place infinitely many normal triangles of each type in each

3-simplex in A such that the resulting collection of normal discs is a normal

subset, denoted by S, of A. It suffices to show that there is a normal isotopy i
of A such that p(i(S)) is a normal subset of P.

The normal isotopy is uniquely determined by defining it on the 1-skeleton.

The normal subset S determines a normal subset Sgt in AÄi. It follows from
Lemma 2.3 that this may be normally isotoped so that pAi{SAi) is normal in

BiA1). For each 1-simplex A1 in A there exists a unique marked edge Alm in

some A/,1-. Define i on A1 to be an normal isotopy taking the normal corners
in Sfl A1 to the corresponding normal corners in i~jjlk(SAi fl A^), Since each

1-simplex in A corresponds to a unique marked edge, this is well defined and

extends to the desired normal isotopy.

Remark 2.5. There are proofs for two special cases of Theorem 2.4 in

the literature. The proofs by Tollefson [12] (for compact manifolds) and Kang
[8] (for topologically finite manifolds with torus ends) construct an explicit
surface. A different proof for 3-manifolds with torus cusps is sketched by
Weeks in the documentation of SnapPea [14], The above proof is inspired by
the latter.

2.6 Projective solution space

Let B be the coefficient matrix of the Q-matching equations. Considering B

as a linear transformation R3r —> Rê, the set of all solutions to the Q -matching
equations is kerZL This will be denoted by Q(T). One often considers the

projective solution space PQ(T), which consists of all elements of Q(T)
with the property that the sum of the coordinates equals one. This is a convex

polytope, and its vertices are called vertex solutions. Since the entries in B are

integers, the vertices of PQ(T) are rational solutions, and hence the subset

of all rational points is dense in PQ(T). Such a polytope is termed rational.
The vector in R3r with each coordinate equal to one is contained in Q(T).
Thus, dimR PQ(T) dimR Q(T) - 1.

The subset of all admissible solutions in PQ(T) is denoted by PF(T).
If N e PF(T) is rational, then there is a countable family of spun-normal
surfaces Si without vertex linking components such that N(Sj) — aiN for
some a; G R. A spun-normal surface is a minimal representative for N, if
the corresponding scaling factor is minimal. Since the admissible solutions

can be found by setting in turn two coordinates from each tetrahedron equal
to zero, it follows that PF(T) is a finite union of convex rational polytopes,
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each of which is contained in a (t- 1)-dimensional rational polytope. Addition
of solutions within a convex cell of PF(T) corresponds to the geometric sum

operation.

2.7 Spew-normal branched immersions

Definition 2.6 (Spun-normal branched immersion). Let P be a pseudo-
manifold (possibly with boundary). Let S be obtained from a compact
(not necessarily connected or closed) surface by removing some boundary

components. Suppose that S has a cell structure with 2 -cells which are either

triangles and quadrilaterals, and that / : S —> P is a piecewise linear map such

that the interior of every 2-cell of S is mapped homeomorphically onto the

interior of a normal disc in P satisfying the following extra conditions.

1. / is normally isotopic to an immersion in the complement of the 0-skeleton
of Si

2. f is transverse to the 2-singlices in P ;

3. the set of accumulation points of f(S)r]Pa) is contained in PtG) ;

4. if [l, } c f(S) has accumulation point X g /', then x gjtl) or x
Then S contains finitely many quadrilaterals and / is proper. The map / is

called a spun-normal branched immersion, and if / is in general position, then

f(S) is termed a branched immersed spun-normal surface in P. Let x(f) g W
be the point defined as follows : the coefficient for each normal quadrilateral

type is the number of 2-cells in S which map to discs of this type.

Proposition 2.7. Let P be a 3-dimensional pseudo-manifokl with

triangulation T. If S • P is a spun-normal branched immersion, then

x(f) g Q(T). Every non-zero point in Q(T) with non-negative integral
coordinates is represented by a (not necessarily unique) spun-normal branched
immersion with finitely many branch points.

It follows from the definition that xif e Q(T) ; the remainder of the

proposition is proved in Subsection 3.2.

2.8 Traditional normal surface theory

To the 31 quadrilateral coordinates (q\,..., q'/) adjoin At further coordinates,

one for each normal triangle type. If S is a closed normal surface in P,
let Na(S) e R7r be its normal coordinate. The normal coordinate of a closed

normal surface satisfies three compatibility equations for each 2-singlex not
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(a) Compatibility equations (b) Compatibility and (9-matching

Figure 9

Normal surface coordinates

contained in dP, arising from the fact that the total numbers of normal arcs

"on either side" have to match up. Denote by C(T) the space of all solutions

to the compatibility equations.
Since the compatibility equations can be viewed as conditions associated

to normal arc types, there is precisely one such equation for each edge in
the induced triangulation of dPc not contained in its boundary. Let c e JB§"

be contained in the interior of B„. Then each element of C(T) satisfies

one compatibility equation for each normal arc in B„ which ends in c (see

Figure 9(b)), Pick one of the arcs, and write the compatibility equation in

the form q'i+l - q" — U - ti+i. Then, proceeding to the next arc, one obtains

q\+2 ~ q'i+i — L'+i - L+2, etc. Summing all these equations gives on the

left hand side (up to sign) the Q -matching equation of the 1-singlex in P

containing c, and the right hand side equals zero. Hence there is a well-defined
linear map

defined by projection onto the quadrilateral coordinates.

A canonical basis for C(T) consisting of t tetrahedral solutions and

e edge solutions is given in [9], Let be a 3-singlex in P, and let

{q;,tj | / l ..3. j — l,...,4} be the set of normal discs types in A3,

The tetrahedral solution associated to A3 is:

For each edge A1 contained in a 3-simplex A3 in A there is a unique normal

quadrilateral type qfA1) in A3 disjoint from it, and there are two normal

triangle types M A1) and to A1) meeting it. The edge solution associated to

a 1-singlex A1 in P is:

pr: (XI i h, (h i

W&s — ti + t2 + % + U — qi — q2 — qs >
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w#=p( E 4^L>+i2(Al) -
Àïcp-Mâ1)

Using signed intersection numbers with edges, it follows from work in [9]
that these solutions form a basis for C(T) (even though this is not stated

in [9] in this generality):

Proposition 2.8 (Kang-Rubinstein). Let P be a pseudo-manifokl with

triangulation T. The set of all tetrahedral and edge solutions is a basis for
C(T) as a vector space over R. In particular, (VI s has dimension t + e,

2.9 Convention for orientable pseudo-manifolds

If P is oriented, it is possible to fix a convention for the quadrilateral
labels which determines the g-matching equations without reference to the

abstract neighbourhoods as follows. The orientation of P is pulled back to A.
Assign the parameter Zi to any edge of Af, and label the remaining edges

according to the convention in Section 2.2 in the unique resulting way with
Z;,Z-,Z-', and denote the quadrilateral types in A? by There is a

1-1 correspondence between quadrilateral types in &f and in A? p(Kf).r
and the quadrilateral types in A; are denoted by the same symbols.

The orientation of ßfA1) can be chosen such that the quotient map

pAi : B{A1 -> P is orientation preserving. It can be deduced from Figure 7 that

if a 1-simplex in p~J(Äf3 has parameter z;, then the normal quadrilaterals
of type $f have positive slope on dB(A1), and the normal quadrilaterals
of type q" have negative: slope. Label the 1-singlices in P by A},.. .,Ag.
It follows that if % is the number of pre-imagCS of A] with label Z;, then

the contribution to the g-matching equation is %($ - cf'). Defining a\j and

a"j accordingly, one obtains the Q-matching equation of A] :

t

(2.1) o E(4 ~ 4* + -4% + (a'ij -a !</" '

i—1

and the coefficient matrix of the system of g-matching equations is given by

(2.2) B

(a'f - a'u au - öfj a'n - au

\4 " a'u

a'n - an
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3. Boundary matters

It was shown in the first section that a spun-normal Surface is uniquely
determined by the quadrilateral discs in its cell decomposition, and that it has

well-defined boundary curves. This section introduces an algebraic version of
tire boundary curve map which is defined on the whole solution space to the

Q-matching equations. The discussion is restricted to closed pseudo-manifolds
merely for pragmatic reasons: more notation and words are required if P is

not closed.

3.1 The boundary curve map revisited

Let t be a normal triangle in B„ and A3 be the 3-singlex which contains t.
Let a be a normal arc in öt, and A2 be the face of A3 containing a. There is

a unique quadrilateral type q in A3 such that q and t have the same arc type
on A2 ; see Figure 6. Let q be the Q -modulus of a (with respect to t), and

give a a transverse orientation (with respect to t) by attaching a little arrow

pointing into the interior of t. This construction is dual to the labelling of
the vertices. The orientation conventions of Subsections 1.10 and 1.11 will be

used throughout this section. Lift the labelling to B„ if is non-orientable ;

otherwise write Bv — Bv.

Let 7 be an oriented path in Bv which is disjoint from the 0-skeleton,
has endpoints in the 1-skeleton, and whose interior meets the 1-skeleton

transversely. Td 7 one can associate a linear functional Ky) in the quadrilateral

types by taking the positive Q -modulus of an edge if it crosses with the

transverse orientation, and by taking the negative Q -modulus if it crosses

against it (where each edge in Bv is counted twice — using the two adjacent

triangles). Evaluating v(7) at a solution N to the Q -matching equations, gives
a real number uv(y).

Figure 10

Quadrilateral slopes and transverse orientation
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Figure 11

0 — p(y) y,_ — LAla is the Q-matching equation

Let c be a vertex in the triangulation of Bv contained in tire 1-singlex A1

in P, and consider a pre-image c of c in Bv. Then the linear functional i>( j)
associated to a small circle 7 with clockwise orientation around c gives the

Q -matching equation of A1 by setting v(j) — 0. This can be deduced from
Figure 11.

Lemma 3.1. Let 7 be an oriented, closed loop in Bv and N g Q(T).
ne number usf/yj g R depends only on the homotopy class of 7 and defines

a homomorphism ifay, nitß„) -> (R, +).

Proof. Since oN(y) — 0 if 7 is a small circle about a vertex of Bv,
it follows that % is well-defined for homotopy classes of loops which intersect
the 1-skeleton transversely away from the 0-skeleton.

Assume that Bv is a closed, orientable surface of genus gv. Corresponding
to a basis of /LUV) choose the system of 2gv closed oriented curves shown

in Figure 12. Then one obtains a linear map Vp : Q{T) —> R2®" defined by

(3.1) *7,(AO (-Civ(Ai),m(mX -, '7(A./;, L'A•
Let g — 9-(ßo)» an(3 let v : Q(T) —> K2-'' be the map defined by i> — ©uP.

There is the following canonical isomorphism Z2®0 S //iÇBt,;Z). Let 7
be an oriented closed curve on B0. Then (x\, f\,.,., jca„, y9v g Z2®» maps
to [7] g //](/©; Z) if and only if 1(7, A;) —Xi and i(y,Pi) =gj; for each i,
where t denotes the algebraic intersection number. This convention identifies
the standard system of curves with the standard basis of Z2®0. This extends

to a unique homomorphism

: R2®0 R> /M/ft.:R».
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Figure 12

The shown surface S of genus k, k > 0 even or odd, is placed in R3 such that it
is invariant under reflection in any of the three coordinate planes. It follows that the
antipodal map (x,y, z) —> (—x, —y, —z) restricts to an orientation reversing homeo-

morphism with quotient S so that the quotient map S —y S is a covering of degree two.

It follows from the definitions that /?„(Z2g°) C //-!/>'„;Zi.

Definition 3.2 (Boundary curve map). Let dv — o vv, and let

B"l Q(T) —> K

be the map defined by B

The map i*0, and hence the boundary curve map, has the following
geometric property:

Proposition 3.3. If N is the normal Q-coordinate of the spun-normal
surface then hv ° v„{N) — d0(S).

Proof. It suffices to assume that P is oriented. Let S be a spun-normal
surface in P, and denote: by S' the subcomplex consisting of all normal

quadrilaterals in S. Orient the edges of normal quadrilaterals Such that the

orientation of the normal arc, the corresponding normal vector n* pointing
towards the dual vertex and the transverse orientation form a positively oriented
basis (see Figure 13). It follows that whenever the quadrilateral disc q has

positive slope with respect to A1, then its oriented edges point away from

q fi A1, and if it has negative slope then they point towards the intersection

point. It follows that at each point of intersection of S with a 1-singlex, the

number of oriented edges pointing towards it equals the number pointing away
from it. In particular, one obtains an oriented 1-chain M of quadrilateral edges
in BS' along which subcomplexes made up of triangles meet S' in S.

The normal vector and the orientation of P determine an orientation of
each vertex linking surface B„. Give each transversely oriented curve in B0TiS



NORMAL SURFACES IN TOI'Ol OCR'AI I Y FINITE 3-MANIFOLDS 369

Figure 13

Oriented 1-chains of quadrilateral edges

the orientation induced from the orientation of B0. Then [B„ (15]— d„{S)
//- /»V; Z). It suffices to show that c can be viewed as a union of oriented
closed curves |J a with the property that each q is homotopie in 5 U B„ to

an oriented simple closed curve //, in Bt, such that [B0 (1. 5] 2M«
The following construction determines IJ Ci and \Jhi, Given N — N{S),

associate a modulus and a transverse orientation to 1-singlices in B„ as

follows. Identify Q-moduli with the values given by N. Let s be an edge
in B0 and let t and f be the triangles in B„ meeting in s, and n and n'
be the associated Q-moduli. If n — n', then give s the modulus zero and

no transverse orientation. If n > n', then give s the modulus n — n' and

the transverse orientation inherited from t, and if n < n', then give $ the

modulus a' — n and the transverse orientation inherited from t'. The modulus

of s determines tire number of quadrilateral edges of the same arc type as |
which are identified with edges of normal triangles in 5, and the transverse

orientation determines the 3-singlex containing the corresponding quadrilaterals
(see Figure 14),

Let c' be the union of edges in B„ with non-zero modulus. A unique
collection of transversely oriented simple closed curves on B„ is derived

from c' as follows. If a is an edge in c' with modulus n and transverse

orientation pointing into t, place n arcs in t, each of which has endpoinfs
identical to r, any two of which only meet in their endpoints, and give
all of them the induced transverse orientation (pointing towards the vertex

of t opposite r; see Figure 13). These arcs are in a natural bijective
correspondence with edges of quadrilaterals in 5 meeting edges of triangles.
A bijection between endpoints of arcs at a vertex f of Bn is now defined

which corresponds to the identifications of quadrilaterals and triangles in 5.
Please refer to Figure 14(b) and 14(d). Let Hv be the union of all triangles



370 S. TILLMANN

b(&h

(a) Example 1 (b) Example 1

B(A1)

(c) Example 2 (d) Example 2

Figure 14

Two examples ; Figures (b) and (d) show : (Top left) The pattern on
the upper hemisphere of 5(À1 ; (Top right) The edge labelling on
Bv ; (Bottom) Introducing arcs and resolving intersection points at v

in Bv containing v, and let A be the set of arcs which have not been

paired yet. An outermost pair 7 and 5 satisfies the following two criteria
(this is a variant of constructions in [12, 8])::

1. If the endpoints of 7 and <5 are identified at 11, then the transverse
orientations of 7 and 5 match.

2. The disc cut out from Hv by 7 U 6 which the transverse orientation of i
points away from does not contain any arcs in A.

If an outermost pair is found, identify their endpoints and isotope the union

away from v (opposite to their transverse orientation). Then repeat the above

by replacing A by A - {7, d}. Thus, after glueing and isotopy, one obtains a

unique disjoint collection C of Simple closed curves, each with a transverse
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orientation. Orient these curves using the above convention for orientation of
Q-edges. It follows from the construction that:

1. Each Ci e C is homotopic in S U Bv to a unique closed (possibly not

simple) curve c" of quadrilateral edges in dS' (e.g. introduce labels for the

arcs specifying a 1- and a 2-simplex of B„ and a normal quadrilateral). In

particular, c" inherits a well-defined orientation from a which agrees with
the orientation of the quadrilateral edges.

2. The: element in //1ÇB0;Z) represented by C is d0(S).

This completes the proof.

3.2 Spun-normal branched immersions

Proof of Proposition 2.7. Let N — (x,) be a point in Q(T) with non-

negative integral coordinates. If P is not closed, one may double P along its

boundary and construct a spun-normal branched immersion corresponding
to the doubled solution (noting that doubling reverses signs of corners).
The restriction of this to either half gives the desired map. Hence assume that
P is closed. At first, a normal branched immersion is constructed which is

not in general position. For each quadrilateral type qt place Xt copies of
this type in P such that all vertices are barycentres of 1-singlices; this is

viewed as a map fq: Sq —) P, where Sq is an abstract union of J2xi pairwise
disjoint quadrilateral discs. Choose each ßp such that its intersection with the

1-skeleton consists of barycentres.

Using the construction in the proof of Proposition 3.3, a finite family, C0,

of pairwise disjoint transversely oriented simple closed curves in Bv can be

constructed with the property that each curve in C0 is homotopic to a unique
curve in the 1-skeleton of B„ ; denote the resulting homotopy taking C0 into
the 1-skeleton of Bv by h0 : ßD x / —» Bv.

Note that the spinning construction can be applied to any finite collection
of pairwise disjoint, transversely oriented, non-separating (not necessarily
normal) curves on After performing the straightening, the result is a

union, S", of normal discs in and normal discs in P which meet Bv in
normal cells ; Sf fl Nv is properly embedded in Nv. Applying this spinning
construction to C„ yields a subset F„ of N„. Then hv can be extended in a

neighbourhood of Bv in Nv such that meets P in normal triangles
and Fv FiNv /ît,(F„,0)n Nv is isotopic to hv(Fv,l) n Nv. Let j| be the

union of all connected components of /?0(FP, 1) which are not vertex linking.
There is a triangulated (possibly non-compact) surface and a simplicial
isomorphism fv : Sv S'v.
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Lift S' — fq(Sq)Uvf0(Sv) to A. Let o be a normal arc in P with endpoints

barycentres of 1-singlices, and denote its pre-images in A by ao and ai.
It follows from the definition of moduli that there are as many normal discs

in p~l{S') containing ao as there are normal discs containing ai. Moreover,
these numbers are finite. One can therefore define an arbitrary bijection between

these two sets which determines a unique bijection between the corresponding
boundary arcs in Sq U„ Sv. Do this for all such normal arcs and denote the

resulting quotient by S. Then 5 is a triangulated (possibly non-compact)
surface S and there is a well-defined normal branched immersion / : S —> P
obtained from glueing the maps fq and /D. The set of branched points is

contained in the pre-image of all barycentres; hence there are finitely many
branched points. It follows from the construction that x(f) — N, and the

map / can be homotoped into general position if desired.

3.3 Analysis of the linear maps and Proof of Theorem 0.1

If Bv is non-orientable, then it may be assumed that the non-trivial deck

transformation P —» P induces an involution a on Bv which coincides with
the antipodal map in Figure 12. Whence am and aA; Aôo+i_;.
Denote the resulting involution on Hi(B„) by a also. It follows that

LvOt) vN(am) ~ -VN(pgo+i-i), and i4f(k) i'x(a\.) iw(ASt,+i_i).
This observation yields the following upper bound :

Lemma 3.4. dim(im^) < 2\'(P) — v„

Proof. If Br, is orientable, then 2gv — 2 - \(B„) — 2- xiBv)-
If Bv is non-orientable, then gv 1 - yCZV)- It follows from the description

of r that the kernel of has dimension at least gv if gv is even.

If JS, 2k + 1 is odd, then /'\(//<. oN{apk+1) -vN{pk+l) implies

WUHhÛ 0, and the kernel of v.# has again dimension at least gv.
Thus:

dim(imv) < ^ 2 - \!/>',,) -f ^ 1 - \(ll:)
or'ble non-or'ble

2v0 + v„ - \ii)P 2\(/') - v„

since P is closed and hence \(dPe) — 2v - 2x(P).

Lemma 3.5. One has kerv impr. Moreover, if N kerv, then

pr~1(N) — L + span{N&(Bi),... ,N&(B.„)} for some L e C(T). In particular.:
the image of pr : C(T) —> QiT) has dimension t + e - v.
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Proof. First assume that B„ is orientable. Let N g(T). Assume that

the induced triangulation % of P0 supports the triangle coordinates to,...
If a value is assigned to to, then the g-moduli of the common edges uniquely
determine values for the adjacent triangle coordinates such that the: matching

equations are satisfied. It needs to be shown that these assignments are well
defined globally if and only if N £ ker v.

Indeed, choose a closed, oriented, simple path 7 in Bv, disjoint from the

0-skeleton, transverse to the 1-skeleton and meeting 2-cells in at most one

normal arc. Let t be a 2-cell of Bv which 7 passes through, and assume

that to is the associated triangle coordinate. If to is given any value, then the

adjacent coordinate f; of the next triangle that 7 passes through must take the

value ti — (qo-qù+to, where —{qo-qù is the oriented sum of the g-moduli
associated to the edge crossed by 7. In this way, uniquely determined values are

given to the coordinates of triangles traversed by 7, and upon returning to the

initial triangle, one has the equation % —vN(^)+tof which is satisfied if and

only if vtf{7) 0. Similarly, values can be assigned to the remaining triangle
coordinates supported by % This procedure is well defined, if and only
if i7v,o : «"iPy ->• (R,+) is the trivial homomorphism. Changing the initial
value assigned to to changes the triangle coordinates by a multiple of Na(Bv).

Now assume that B{, is non-orientable. Then the above can be done for
the lift of the triangulation of P to the orientable double cover P. Let to and

ft be normal triangles on Bv which are exchanged by the non-trivial deck
transformation a. Let f be a closed normal path in Bv passing through to and

t\ which is invariant under a. Then 7 can be written as the union of arcs a and

a(a) with v^(a) — miqiftfjm Then 0 îwfj| Av(tf) + vN(a(a)) 2vio(a).
Whence the above procedure assigns the same values to fe and t\. It follows
that the normal triangles constructed in P can be isotoped to be invariant
under a.

Lemma 3.6. The matrix B has rank e - and we have dimg(T) —

3t - e + v0 2t + \(P) - % and dim im v — 2\(P) — v„.

Proof. It will first be shown that tire rank of B is at most e — vç, The rank
of B equals 31 - dim kerÇB) - e - dim ker Br. It therefore suffices to find

v0 linearly independent elements in ker B1. The dual system of equations
described by the transpose has one equation for each quadrilateral type and

one variable, lai, for each 1-singlex Â1 in P. The equation associated to q
is 0 where the sum is taken over all 1-singlices in P and

s&i(q) is the total slope of q with respect to A1 introduced in Section 2.1.
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Assume that P is orientable. In this case, q has the same slope at opposite
normal corners, and opposite signs at normal corners sharing a normal arc.

Let S be a vertex linking surface. Then the assignment x^iS) — WSnA1)
defines an element in ker Br. Since each triangle disc is uniquely determined

by its intersection with the 1-simplices, it follows that the set of v solutions
thus obtained from the v vertex linking surfaces is linearly independent, giving
rank at most e — v.

Hence assume that P is non-orientable. Considering its lift to the orientable
double cover, one: finds that if the edge of a quadrilateral disc in P is

normally isdtöpic into an orientable vertex linking surface, then the signs
at the respective corners are opposite. This implies that the above argument
can be applied to an orientable component of dPc. It does not, however,
work for non-orientable components. This gives rank at most e — v0 in

general.

Thus, dim Q(T) > 31 - e + v0 — +• \(P) - v„. It needs to be shown

that this is also an upper bound. One has 2f -f \{P) - v„ < dim Q(T)
dim ker u + dim im v — dim impr + dim imv — t + e — v + dim im v. Thus

2x(P) ~ Vn > dim im v > 2\(P) - v„, This forces equality and hence the

conclusion.

Lemma 3.7. ker$ ker^

Proof. It follows from the definition that ker^ c ker d. Assume that

d(N) 0. If Bv is orientable, then liv is an isomorphism which implies
O>(A0 — 0. Hence assume that Bv is non-orientable.

Since dim im^ 2x(P)—v„, it suffices to show that whenever S represents
Hie homotopy class of an oriented 1-sided simple closed curve in Bv with
the property that v^N) determines J", then 1.(^,5) — 0 for each standard

generator.

Indeed, since <5 is 1-sided, we have a(§) — 5. Thus, til, 7) —

vn((t(7)) i(Â, (t(j)) — i(a(S),(7(7)) —i(§j7). Whence 1(8/y) — 0 for each

standard generator, which gives 17(AO 0.

Proof of Theorem 0.1. The first part of the statement follows from the

above lemmata in conjunction with the discussion in Subsection 2.6.

Since kerö ker^, it follows that dim im^ dim imd, and hence that

d is surjective. Since v is defined over the integers, its restriction to integer
lattice points in Q(T) has image in Z2g, whence d has image of finite index
in ©„//iLBtgZ).
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M ±i

figoeb 15

Orientation of quadrilateral sides and intersection numbers

3.4 Intersection numbers and Proof of Theorem 0.2

Assume that P is oriented. The material in this subsection is based on

the observation that one can determine tire algebraic intersection number of
the oriented boundary curves of two spun-normal surfaces from their normal

Q -coordinates. The intersection pairing on H\ (B0 ; R) pulls back to a bi-linear,
skew-symmetric pairing * on R2®". Taking sums gives a pairing * on R25

with the property that for any N,L e Q(T), we have :

O G-Plïl> ti GF#

To obtain a corresponding bi-linear, skew-symmetric form on Q(T), let

/0 1 -IX
C= -1 0 1

-i o/
and let Ct be the (31 x 3f) block diagonal matrix with t copies of C on its

diagonal. Then for any N, L Q(T), define :

(3.2) (N,L)^NtC„L.

Lemma 3.8. Let P be an oriented, closed pseudo-manifold. For all
N,Le Q(T) :

(N,L) v(N) * v(L).

Proof. One can compute (N,L) by summing intersection numbers
obtained for normal quadrilaterals over all 3-singlices as follows (see Figure 15).

If N and L have different non-zero Q-coordinates in some 3-singlex, the

associated normal quadrilaterals are naturally transverse, and the contribution
to (N,L) is (up to sign) twice the product of the Q-coordinates, and the sign
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is determined by the order of the surfaces. If they have the same non-zero

g-coordinate in some tetrahedron, the contribution is zero, independent of
the chosen transverse intersection. Given the map v and the orientation
conventions, this gives precisely the intersection pairing in homology of vertex
links.

Proof of Theorem 0.2. If Ä is a maximal convex polytope in PF(T),
then it is the intersection of a dim R -+ 1) -dimensional vector space R'

with the unit simplex. The set PF(T) is obtained by setting in turn two
coordinates from each 3-singlex equal to zero. Thus R' is the intersection of
<2(T) with a t -dimensional subspace of R3r, and its dimension is at least

(21 + x(P) ~ + t - 3f x(P) ~ <'»

Assume that P is oriented. For any V.L é R', one has v(N) * v{L)
(N,L) — 0. The image v(R') therefore lies in a self-annihilating subspace

of R2,/. Its dimension is thus at most g — \(/'L giving dim/?' < x(P) f"
dim(P' n kerv!. Thus dimP dimP' — 1 < \i/'s + dim^' n keri/) — 1 —

\(/'! -L dim(Än kerv).
If P is non-orientable, the previous paragraph applies to P. and we have

\iP) 2\{P) - v„. This completes the proof.

4. Examples

A general procedure to determine the boundary slope of a spun-normal
surface on a vertex linking torus is given. Then the figure eight knot

complement and the Gieseking manifold are discussed. These examples can
be found in [9],

4.1 Boundary slopes on tori
If B0 is a torus, then the boundary curve map gives a convenient way

of determining the boundary curves of a spun-normal surface S from its

normal Q -coordinate N N(S). In this case B0 may be chosen such that

it meets S in a finite family of parallel simple closed curves, all with the

same transverse orientation, and it meets AT0 in the same number of parallel

open annuli. The homology class of such a curve is termed the slope of S

on Since A0 \ {o} is orientable, one can choose generators {X,ß} for
Tti(Ba) such that together with a normal vector n pointing into N0, {A
is a positively oriented basis for 77V0. This corresponds to the orientation
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0 4

7

2 6

Figure 16

An ideal triangulation of the figure eight knot complement

convention of a standard meridian-longitude pair of a knot complement. Since

Sff is a homomorphism, the following holds under the above assumptions.

1. If viv(/i) — Vn(\) — 0, then S is disjoint1) from Bv.

2. If Vffyi) ^ 0 or vN( A) 0, then let r/ > 0 denote the greatest common
divisor of the numbers \vN(p)\ and z^(A)|. Put p — -i>n(X)/d and

Q ~ vn(p)/(1. Then r // ' \> has i^y(S) 0 and hence it is a boundary
slope of S. Furthermore, S has d boundary curves on B0.

Now assume that each vertex linking surface is a torus; label the surfaces

B„ by 7),...,7j,. Choose generators {Ai,/»;} for each 7', as above. The

oriented boundary curves of a spun-normal surface S with normal
(incoordinate N N(S) are then determined by the vector :

(4.1) /MA /'\<A,->. (/',») /
and boundary curves of linear combinations of compatible surfaces can be

determined using linear combinations of vectors of the form (4.1) since v is

additive. Moreover, the intersection pairing has the following form :

4.2 THE FIGURE BIGHT KNOT COMPLEMENT

Let M denote the complement of the figure eight knot. An oriented,
ideal triangulation of M is encoded in Figure 16. Since M is oriented, the

1 This is also shown in the file normal_surface_colisLruclion.c in [14],
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convention given in Subsection 2.9 will be used, with the quadrilateral types
dual to wik- and x® denoted by jt® and q{k) respectively. One computes :

which determines a single g -matching equation :

0 p + p' - 2p" + q + q' - 2q"

This implies that the space PQ(T) is four-dimensional.

Figure 17

The induced triangulation of the vertex linking torus, where the sides of the rectangle are
identified by translations parallel to its sides and triangle i is dual to vertex i in Figure 16.
The shown elementary curves are the standard meridian (solid) and longitude (dashed).

The induced triangulation of the vertex linking surface is shown in

Figure 17 and used to determine the linear functionals associated to the

standard peripheral curves :

The normal g-coordinates of closed normal surfaces satisfy v(X) =• v(p) — 0,
whence any closed (embedded) normal surface is vertex linking. It follows that

PF(T) is zero-dimensional. A direct calculation reveals that there are four

projective classes of admissible solutions; all have minimal representative a

once-punctured Klein bottle. Their normal g-coordinates and boundary slopes

are listed in Table 1. This calculation in particular shows that no spun-normal
surface is a Seifert surface for the knot.

4.3 The Gieseking manifold

The Gieseking manifold, M', is double covered by the figure eight knot

complement, M, and the covering transformation is encoded by the involution

(05)(14)(26)(37) on the vertices in Figure 16. The resulting ideal triangulation
T' of M' has one ideal 3-singlex and one ideal 1-singlex. Denote the three

K A) 2p + 2p' - 4p",

KM) - </ </"•
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Table i
Normal surface in the figure eight knot complement

solution v(p) p{X) slope

(2,0,0,0,0,1) 1 4 -4
(0,2,0,0,0,1) -1 4 4

(0,0,1,2,0,0) -1 -4 -4
(0,0,1,0,2,0) 1 -4 4

quadrilateral types in M' by f,r',r", where lifts tö pu). The Q-matching
equation is r + r' - 2r" 0. It can be worked out from the triangulation
or by observing that the induced involution on quadrilateral types in M is

(p q')(p' q)(p" q"). Thus, dimPg(T') 1 and PF(T') 0.
The boundary curve map is defined via the induced triangulation of the

double cover of the Klein bottle:; using the generators from the above section,

one has : v(\) — —2r — 2r' + 4r" — 0 and v(p) — —2r' T 2r". Generators

X'Ap! can be chosen for Z#Z2 such that the map —> H\(BV)
is given by A —> A' and p -4 {p'f — 0. The composition

Q(T') -> Z2 -» //|(ßD;R> //](/iH; R)

is then

N -> (—z^v(A), vN(p)) (0, vN(p)) -> miß)A vN(p)X'.

Since v{p) -2r' + 2r", it follows that the map d: Q(T') —f Hi{Bv;R) is

surjective. Its restriction to integral points in Q{T') has image of index two
in Hi(Bv;Z), which gives a subgroup of index four in Hi(B^),.
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