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TERNARY CUBIC FORMS AND ETALE ALGEBRAS

by Mélanie RACZEK and Jean-Pierre TIGNOL *)

The configuration of inflection points on a nonsingular cubic curve in
the complex projective plane has a well-known remarkable feature: a line
through any two of the mne inflection points passes through a third inflection
point. Therefore the inflection points and the 12 lines through them form a
tactical configuration (94, 123), which is the configuration of points and lines
of the affine plane over the field with 3 elements ([3, p.295], [7, p.242]).
This property was used by Hesse to show that the inflection points of a
ternary cubic over the rationals are defined over a solvable extension, see
[11, §110]. As a result, any ternary cubic can be brought to a normal form
X+ X% + X5 — 3\ xx; over a solvable extension of the base field'). The
purpose of this paper is to investigate this extension.

Throughout the paper, we denote by F an arbitrary field of characteristic
different from 3, by F, a separable closure of F and by T = Gal(F,/F) its
Galois group. Let V be a 3-dimensional F-vector space and let [ € S°(V*)
be a cubic form on V. Assume that f has no singular zero in the projective
plane Py (F;). Then the set J(f) C Py(F;) of inflection points has 9 elements.
There are 12 lines in Py(F;) that contain three points of J(f); they are
called inflectional lines. Their set £(f) is partitioned into four 3-element
subsets Tg, T1, T, T3 called inflectional triangles, which have the property
that each inflection point i1s incident to exactly one line of each triangle.
Let T(f) = {T0,%1,%2,%3}. There is a canonical map £(f) — T(f), which
carries every inflectional line to the umque triangle that contains it. The Galois

*) The second author is partially supported by the Fund for Scientific Research ER.S.~FNRS
(Belgium).

1) We are grateful to the erudite anonymous referee who pointed out that the normal form of
cubics was obtained by Hesse in [5, §20, Aufgabe 2] before he proved (in [0]) that the equation
of inflection points is solvable by radicals.
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group I" acts on J(f), hence also on £(f) and T(f), and the canonical map
£(f) — ZT(f) 1s a triple covering of I'-sets, in the terminology of [9, §2.2].
Galois theory associates to the I'-set £(f) a 12-dimensional étale F-algebra
L(f), which 1s a cubic ¢tale extension of the 4-dimensional étale F-algebra
T(f) associated to T(f). We show in §4 that if one of the inflectional triangles,
say Ty, 1s defined over F, hence preserved under the I'-action, then there
are decompositions

T(H~FxN, LfH~KxM,

where N and K are cubic étale F-algebras whose corresponding I'-sets are
XIN) = {%, %2, T35} and X(K) = Ty respectively, and M is a 9-dimensional
étale F-algebra containing N, associated to K and a unit ¢ € K*. One can
then identify the vector space V with K in such a way that

(0.1) FX) = Tr(a'X%) —3ANg(X) for some \ € F,

where Ty and Ny are the trace and the norm of the F-algebra K. Conversely,
if f can be reduced to the form (0.1), then one of the inflectional triangles is
defined over F, and X(K) is isomorphic to the set of lines of the triangle.
Note that the (generalized) Hesse normal form

a X + a2 + a3 5 — 3AX1x2%3

is the particular case of (0.1) where K = FF x F x F (1e., the T -action on
X(K) is trivial) and g = (al_l,az_ l,a; Y. As an application, we show that the
form Tx(X>) can be reduced over F to a generalized Iesse normal form
if and only if K has the form F[\S/E] for some ¢ € F*, see Example 4.4.

The 9-dimensional étale F-algebra M associated to a cubic étale F-algebra
K and a unit ¢ € K* was first defined by Markus Rost in relation with
Morley’s theorem. We are grateful to Markus for allowing us to quote from
his private notes [10] in §2.

For background information on cubic curves, we refer to [3], Chapter 11
of [7], or [2].

1. TTALE ALGEBRAS OVER A FIELD

An étale F-algebra 1s a finite-dimensional commutative /7-algebra A such
that AQpF,~F, x---x F,; see [1, Ch. 5, §6] or [8, § 18] for various other
characterizations of étale F-algebras. For any étale F-algebra A, we denote by
X(A) the set of [F-algebra homomorphisms A — F,. This i1s a finite set with
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cardinality |¥(A)| = dimp A. Composition with automorphisms of F; endows
X(A) with a I'-set structure, and X 1s a contravariant functor that defines an
anti-equivalence of categories between the category Etp of étale F-algebras
and the category Setr of fimite I'-sets, see [1, Ch. 5, §10] or [8, (18.4)].

Let G be a finite group of automorphisms of an étale F-algebra A. The
group G acts faithfully on the T'-set X(A).

ProOPOSITION 1.1. If G acts freely (i.e., without fixed points) on X(A), then
HYG,A")=1.

Proof. The G-action on X(A) maps each I'-orbit on a I'-orbit, since the
actions of G and I' commute. We may thus decompose X(A) into a disjoint
union

XA) =X [1 . [ X,
where each X; 1s a unmion of I'-orbits permuted by . Using the anti-
equivalence between Etp and Setr, we obtain a corresponding decomposition
of A into a direct product of étale F-algebras

A=A x- - xXA,.
The G-action preserves each A;, hence
HYG,A™) = H(G,A]) x -+ x H(G,A)).

It therefore suffices to prove that H'(G,A*) = 1 when G acts transitively
on the T-orbits in X(A). These I'-orbits are in one-to-one correspondence
with the primitive idempotents of A. Let ¢ be one of these idempotents and
let # C G be the subgroup of automorphisms that leave e fixed. Let also
B =eA. The map g &b g(b) for ¢ € G and b € B induces 1somorphisms
of G-modules

A =Z]G] Sz [H] B, A% = Z[G] QzIH] B* ,

hence the Eckmann-Faddeev—Shapiro lemma (see for instance [4, Prop. (6.2),
p- 73] yields an isomorphism

HYG,A™) ~ HY(H,B").

Now, B is a field and each element 4 € H restricts to an automorphism
of B. Let £ € X(A) be such that £(¢) = 1, hence £(x) = E(ex) for all x € A.
If h € H restricts to the identity on B then

eh(x) = h(ex) = ex forall xe A,
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and hence

E(h(x)) = &) forall xe A,

It follows that £ leaves ¢ fixed, hence i =1 since G acts {reely on X(A).
Therefore H embeds injectively in the group of automorphisms of B. Hilbert's
Theorem 90 then yields H'(H,B*) = 1, see [8, (29.2)].

2. MORLEY ALGEBRAS

Let K be an étale F-algebra of dimension 3. To every unit a € K* we
associate an étale F-algebra M(K,a) of dimension 9 by a construction due
to Markus Rost [10], which will be crucial for the description of the T -action
on inflectional lines of a nonsingular cubic, see Theorem 3.2.

DEFINITION 2.1. Let D be the discriminant algebra of K (see [8, p.291]);
this 1s a 2-dimensional étale F-algebra such that K @p D is the S;-Galois
closure of K, see [8, §18.C]. We thus have F-algebra automorphisms o, p
of K ®r D such that

olp=1dp, plx=1dg, o° =p* =Idggp, and po=c’p.
We identify each element x € K with its image x® 1 in K ®p D and denote
its norm by Ng(x).
Now, fix an element ¢ € K. Let s, ¢t be indeterminates and consider the
quotient F -algebra

A=K&pDls, /(s — cX@yo@™", £ — Nx(@)) .

Since the characteristic is different from 3, every F-algebra homomorphism
K®r D — F; extends in 9 different ways to A, so A is an étale [ -algebra.
Abusing notation, we also denote by s and ¢ the images in A of the
indeterminates. Straightforward computations show that ¢ and p extend to
automorphisms of A by letting

o(s) =sto*@™", oO=t, pO=s5", pO=t,
and that the extended o, p satisly ¢° = p? = Id4 and po = o%p, so they
generate a group G of automorphisms of A isomorphic to the symmetric
group Ss3. The subalgebra of A fixed under G is called the Morley F-algebra
associated with K and a. Tt is denoted by M(K, a).
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Since G acts freely on X(K ®p D), it also acts freely on X(A), hence
dimp M(K,a) = 9.

It readily follows from the definition that M(K,a) contains the 3-dimensional
étale F-algebra

N(K,a)=F[t], with £ = Ng(a).
Clearly, if ¢ = M’a for some \ € F* and k € K>, then there
is an isomorphism M(K,d') ~ M(K,a) induced by s — so*(k)o(k)~!,
! — IANg(K).

EXAMPLE 22. Let K = F X Fx F and a = (¢1,d2,a3) € K*. Then
D~FxF,so K®&pD~F° We index the primitive idempotents of K @ D
by the elements in G, so that the G-action on the primitive idempotents

(¢;)rcc 1s given by
Be.) =¢eyr for 8, 7€C.
We identify K with a subalgebra of K & D by
(X1, X2, %3) = X1(€1g + €,) + X2(ex + €p5) + X3(€52 + €52)
for xi, X2, x3 € F. Then A ~ F°[s, ] where

)
o(a) as a3 a a ay a
= = —€ldtT —€; T —€x + —€p+ —€p+ —€5,
a(a) as a a an ) a3

and
IS = d1d2ds3 .

Let r=3 .;7(8)er € M(K,a). Then r° = Z—i and M(K,a) = F[r,t]. Note
3
that (ﬁ) = I 5

—, S0

a) as

M(K,a):F[f/%,ﬁ/%} and  N(K,a) ~ F$/aaas].
3 3

EXaMPLE 2.3. Let K be an arbitrary cubic étale F-algebra and let ¢ = 1.
Let Flw] be the quadratic étale F-algebra with w?>+w+1 = 0. By the Chinese
Remainder Theorem we have

N, 1) = F[t]/(£ — 1) =~ F x Flw].
The corresponding orthogonal idempotents in N(K, 1) are

er=11+t+* and e =12-—1-7).
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Let Ay =¢1A and A; = ¢34, s0 A = A B A, and the G-action preserves A,
and A,. Let

e =1+ s+ 5)e €Ay, e =32 —s5— s e €Ay,
e1=L1+s5+5e €Ay, g2 =41 +st+ 5 er € Ay,
g3 =2(1+ 5"+ s ey € Ay

These elements are pairwise orthogonal idempotents, and we have
€1 = e + ez, €y = €1+ &2 TE3.
The G-action fixes ¢1; and eqy, while

o) = &2, o(gz) =¢3, o(e3) = €1,

ple1) = €1, plez) = g3, plez) = &2 .

We have ¢t =¢; and ey 5 = ¢q1, hence ey A ~K®D and ey M(K,1) ~ F.
On the other hand, ¢1,5 1s a primitive cube root of unity in e, M(K, 1). It 18

fixed under ¢ and p(e125) = e1ps~ . Therefore we have
epA~K@D®QF[w] and e MK, 1)~ (D@ Flw])?’,

where p acts non-trivially on D and F[w]. The quadratic étale algebra
(D @ Flw])” 1s the composite of D and Flw] in the group of quadratic
étale F-algebras, see [9, Prop. 3.11]. It is denoted by D x Fl[w]. Finally,
we have an isomorphism K @ Flw] ~ e;M(K,1) by mapping x € K to
xe1 4+ o0(xX)ex + 0*(xX)e3 and w 10 exf, SO

MK, 1) = F x (D * Flw]) x (K® Flw]).
Under this isomorphism, the inclusion N(K, 1) — M(K, 1) is the map
FxFlw] = Fx(DxFlw]) x (K& Flw]), X, y)— (x,x,9).
In particular, if F contains a cube root of unity, then Flw] >~ F x F and
MK, 1)~ F xDxKXxK.
The inclusion N(K, 1) — M(K, 1) is then given by
FXFxF—FxDxKxK, x,v,2)— (X, x,9,2).

Details are left to the reader.
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In the rest of this section, we show how the TI'-set %(M(K, a)) can be
characterized as the fibre of a certain (ramuified) covering of the projective
plane.

Viewing K as an F-vector space, we may consider the projective plane
Py, whose points over the separable closure F are

Px(Fo)={x - F |x€ K@rF,, x# 0}.
Let
(2.1) 7w Pg(Fy) = Px(Fy), x F—=x-F* forxeK®@F,;, x£0.
We show in Theorem 2.6 below that there is an isomorphism of T -sets
X(MK,a)) ~7Na F}) for aeK*.

In view of the anti-equivalence between Ety and Setr, this result characterizes
the Morley algebra M(K,a) up to isomorphism.

Until the end of this section, we fix ¢ € K* and denote M(K,a) simply
by M. We identify K ® M with the subalgebra of A fixed under p.

LEMMA 2.4. There exists u € (K @ M)Y* such that s = c>(wyo(u)~'.

Proof. Define a map ¢: G — A* by

cld) = co(a’p) = 1, c(o) = clp) =5, c(0?) = clop) = ().

Computation shows that so(s) o%(s) = 1, and it follows that ¢ is a 1-cocycle.
Proposition 1.1 yields an element v € A* such that ¢(r) = vr(v)~! for all
T € G ; in particular, we have

s =wvo(w) ! = vp(v) L.
Let u = o*(v)~!. The equations above yield
s=c o)™ and pu)=u.

Therefore 1 € K M, and this element satisfies the condition.

LEMMA 2.5. The set 7~ Xa - F}) has 9 elements if it is non-empty.

Proof. Suppose xo € K@ F; is such that x3 - F = a-F}. Then the map
v FX + Xoy - FX defines a bijection between 7~ (1 - F*) and 7~ (a - F),
so it suffices to show that ‘77_1(1 . FSX)‘ = 0. Identify K@ F; = F; X Fy X Fy,
and let w € F be a primitive cube root of unity. To simplify notation, write
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(71 : 22 ) =(2,22,23) - F for z1, 22, 23 € Fs. It is easy to check that
7~ 1(1- FX) consists of the following elements :

(1:1:1), (1:w:w?), (1w w),

(1:1:w), (l:w: 1), (w:1l:1),

1:1:0%, ((d:u?: D), W 1:1).

Each £ € X(M) extends uniquely to a K -algebra homomorphism

o~

E:KRFrM — K®rpFs.

THEOREM 2.6 (Rost). Let u € (K ® M)* be such that o*(u) o(u)~! = s.
The map &€ — &) - FX defines an isomorphism of T -sets

O XM) = 77 a- FX).

Proof. If ue (K®M)* satisfies o?(u)o(u)~! = s, then
A1) o) =5 =)o),

so a~ ' is fixed under o, hence a~'u? € M* . Therefore a‘lg(u)e’ crx,
hence E(u) - FX lies in 77 Y(a - FX).

Note that the map & does not depend on the choice of u: indeed, u is
El\etermine/(\i uniquely up to a factor,\in M>*, and for m € M* we have
E(um) = E(u) E(m), so E(um) - FY = &E(u) - FY° .

It is clear from the definition that the map & is I'-equivariant. Since
|1XM)| = ‘ﬂ_l(a-FSX)‘ = 9, it suffices to show that ® is injective to
complete the proof. Extending scalars, we may assume that K ~ F x F X F,
and use the notation of Example 2.2. Then, up to a factor in M*, we have

= o?p(s) e+ o(s) ey + €2 + a(s) € + Cop + T p(s) €2,
2
= Zo et + €) + 160 + €1,) + (052 + €5y)
P
—(Zorn1)ekoM=MxMxM.
2.

If & n e X satisfy &) - 17 = A - FX, then £(2X) = n(22) and

2
&(r) = 1(r). Since M 1s generated by r and ¢, it follows that & = 7.
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REMARK 2.7. As pomted out by Rost [10], the map 7 factors through
W(E) = {(\, %) F | ¥’ = Ng()} € Prock(Fy)
we have m = m; o wp, where
my: Pr(Fs) = WFy),  x-FY = (Nk(), ) - FS

and
w1 W) — Pr(Fy), ANX)-Fl—x-FI.

There 1s a commutative diagram
@
X(M(K, @) —— Px(Fy)
X ™)

X(NK,a) —=— W)

T

P T PR,
where X(i) is the map functorially associated to the inclusion
i: N(K,a) — M(K,a)

and ®" maps the unique element of X(¥) to a- F*. The induced map &'
is an isomorphism of T"-sets

D' X(N(K,a)) = 7, (@ F)).

3. INFLECTION POINT CONFIGURATIONS

Let V be a 3-dimensional vector space over F. Let S$*(V*) be the
third symmetric power of the dual space V*, 1.e., the space of cubic forms
on V. A cubic form f € S>(V*) is called triangular if its zero set in the
projective plane Py (F;) defines a triangle or, equivalently, if there exist linearly
independent linear forms ¢y, ¢z, p3 € V¥ @F F; such that f = p1p203 In
S’(V* ® F,). The sides of the triangle are the zero sets of ¢y, @, and @5 ;
they form a 3-element I'-set &(f).
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PrOPOSITION 3.1. Let f € S’(V*) be a triangular cubic form and let K
be the cubic étale F-algebra such that X(K) ~ &(f). Then we may identify
the F-vector spaces V and K so as to identify [ with a multiple of the norm
Jorm of K,

f=ANg  for some \e F*,

In particular, the T -action on G(f) is irivial if and only if [ factors into a
product of three independent linear forms in V*.

Proof. Let f = wipap3 for some linearly independent linear forms
©1, @2, w3 € V* @ F;. Since Y1773 = o123 for v € T, it follows by
unique factorization in S>(V*) that there exist a permutation m, of {1,2,3}
and scalars A, .~ € F;¢ such that

Toi = A,y P,y for i=1, 2, 3.
Since Yyp; = 7(%yp;) for 7, 6 € T, we have
A @8 Prgs) = Vs @,8) Ay s i)y Py ms(id
hence 7.5 = m,ms and
G.1 Arya@yd = Y Ams(0),6) Arymstiny -

The I'-set &(f) is {1,2,3} with the I'-action =~ — m, ; therefore we may
identifly K with the F-algebra of I'-equivariant maps

K =Map({1,2,3},F)".

For v € T, define a, € Map({1,2,3}, F) = (K ® F)* by

Cl,y(i) = )\m .
Clearly, a, — 1 if ~ fixes ¢, ¢,, and ¢3; moreover, by (3.1) we have
a,"as = a5 ftor v, 6 € T', hence (a,),cr 1s a continuous 1-cocycle.

By Hilbert’s Theorem 90 [8, (29.2)], we have HY(T',(K @ F,)*) = 1, hence
there exists b € Map({1,2,3}, F¥) such that a, = b7b~" for all v & T. For
i=1,2,3,let Yy =b{@p; € V' @ F,. Let also
=
A= (P23 .
Computation shows that "¢ = ¢,  for v € T and i = 1, 2, 3, and
f = MNhthals in S7(V* @ Fy), hence )\ € F*. Define

©: V@F;, »>Map({1,2,3},F,) =K F;
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by
ex):i—yY;x) fori=1,2,3 and x € VR F;.

Since 1, ¥», 13 are linearly independent, ® is an F-veclor space isomor-
phism. Tt restricts to an isomorphism of F-vector spaces V —+ K under which
f is identified with A\ Ng.

Now, let 3 C Py(F;) be a 9-point set that has the characteristic property of
the set of inflection points of a nonsingular cubic curve: the line through any
two distinct points of J passes through exactly one third point of J. Let £ be
the set of lines in Py(F;) that are incident to three points of J. This set has
12 elements, and J, £ form an incidence geometry that 1s isomorphic to the
affine plane over the field with three elements, see [7, §11.1]. In particular,
there is a partition of £ into four subsets Ty, ..., T3 of three lines, which
we call friangles, with the property that each point of J is incident to one
and only one line of each triangle.

Assume J is stable under the action of T", and I" preserves the triangle Ty .
Let K be the cubic étale F-algebra whose T'-set X(K) is isomorphic o Ty.
By Proposition 3.1, we may identify V with K in such a way that the union
of the lines in %, is the zero set of the norm Ng.

THEOREM 3.2. There exists a € K™ such that the T -set of vertices of the
triangles %1, %,, Tz is 7 (a - FX), where m: Pr(Fy) — Pg(F,) is defined
in (2.1). The set J is the set of inflection points of the cubics in the pencil
spanned by the forms Tx(a='X?) and Ng(X), and we have isomorphisms of
I"-sets

£~ X(K) [ X (MK, a)), {%1,%2, T3} ~ X(N(K,a)) .

Proof. Fix an isomorphism K ® F; ~ F; x F; x F;, and write simply
(X1 : X2 @ x3) for (x1,x2,%3) - F*. The sides of T, are then the lines with
equation x; = 0, x, =0, and x3 = 0. Let T = {py,...,po}. We label the
points so that the incidence relations can be read from the representation of
the affine plane over F5 in Figure 1.

Say the line through py, p,, p3 1s x; = 0, and the line through py, ps, ps
is x, = 0. We can then find uy, uz, uz, v € FS such that

pi=@0O:u;:1) for i=1,23, and ps=(1:0:v).
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........... To T |
- {3:2 TS .....
FIGURE 1

Incidence relations on J

Since p; lies at the intersection of x3 = 0 with the line through p; and p4,
we have

p7:(1 2 —ulv:O).

Similarly,

ps=0:—uwv:0) and po=(1:—usv:0).

Finally, since ps (resp. pe) lies at the intersection of x, = 0 with the line
through p; and pg (resp. po), we have

pPs = :0:uv) and pg=(uy:0:usv).
Collinearity of the points p,, pe, p7 (tesp. pa, Ps, Po i 1€Sp. P3, Pe, Pg) Yields

U3 = thits,  (YeSp. U3 = uyilz ; TeSp. U3 = Uyily).
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Therefore

3

3 3
1:L£2:L£3 = Ul lUs .

U
Since uy, U, 3 are pairwise distinct, it follows that there is a primitive cube
root of unity w € F; such that

Uy — Wiy and U3 — wzul .

Straightforward computations yield the vertices of the triangles Ty, 75, T3 :
T qu=0:Pmv: —v), gi=0:1uv:—w™), ¢ =W wmv:—v),
T gp = (w:mv: —v), Gb=0:umv:—wv), ¢ =(1:wmv:—v),
Tz gz = (1: wigv : —wv), gy = (W?: wiyv: —v), 44 = (1:uv: —v).

Let ay = (1, u?v37 —v¥) € (K ® Fy)*. It is readily verified that

{QI: q‘i: qlll7 q2, QIZ: qzn q3, qé7 C]g} = W_l(ao 'FSX)'

Since J is stable under the action of T', the point a¢ - F* 1s fixed under T,
hence for v € I" there exists A, € F* such that

’Y(Clo):ao/\,y mK®F;.

Then (Ay)yer is a continuous 1-cocycle of I' in F)*. Hilbert’s Theorem 90
yields an element p € FX such that A\, = py(p)~! for all v € T'. Then
for a = aopr we have ao- F = a-F and (@) = a for all v € ", hence
acK*.

The inflection points of the cubics in the pencil spanned by Tx(a—'X?)
and Ng(X) are the points (x; : X, : x3) such that

R o (o) =0 =0,
X1X2X3 = 0.

The solutions of this system are exactly the points py, ..., Po.

Finally, the T-set of sides of the triangle % is isomorphic to X(K)
by hypothesis, and the map that associates to each side of a triangle its
opposite vertex defines an isomorphism between the set of sides of Ty,
Ty, T3 and the set {q,...,¢5} = 7~ Ya - FX). By Theorem 2.6, we have
mYa - F¥) ~ X(M(K,a)), hence

£~ X(K) [[ X(M(KK,a)) .
This isomorphism induces an isomorphism

{%1,%,, %} ~ X(NK, ),
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which can be made explicit by the following observation : the triangular cubic
forms in the pencil spanned by Tx(a¢~'X>) and Ng(X) are the scalar multiples
of Ng(X) (whose zero set is the triangle Tg) and of Tx(a~'X3) — 3z Ng(X),
where z € F is such that z°> = Ng(a~'). The zero set of the latter form is
T1, %, or T3 depending on the choice of z, and the three values of z are in
one-to-one correspondence with the elements in the fibre of the map m; in
Remark 2.7.

4. NORMAI FORMS OF TERNARY CUBICS

Let V be a 3-dimensional vector space over F and let f € S*(V*) be a
nonsingular cubic form. Recall from the introduction the notation J(f) (resp.
£(f), resp. T(f)) for the set of inflection points (resp. inflectional lines, resp.
inflectional triangles) of f. The following result is a direct application of
Theorem 3.2:

COROLLARY 4.1. Let K be a cubic étale F-algebra. The following
conditions are equivalent:
() [ is isometric to a cubic form Tg(a='X3) — 3XNg(X) for some unit
a € K* and some scalar N € F;

(1) T has a fixed point Ty € T(f) with o ~ X(K) (as T'-sets of 3 elements).

When these conditions hold, we have
SN =XE) [[X(MK,a) and T(f)~{To} [ X(NK,a)).

Proof. If f(X) = Tg(a='X3)—3XNg(X), then computation shows that the
zero set of Ng is an inflectional triangle of /. This triangle is clearly preserved
under the T"-action. Conversely, if Ty € T(f) 1s preserved under the I'-action
and K is the cubic étale F-algebra such that X(K) ~ T, Theorem 3.2 yields
an element ¢ € K* such that the forms Tg(e~'X>) and Ng(X) span the
pencil of cubics whose set of inflection points is J(f).

Applying Corollary 4.1 in the case where F is a finite field yields a direct
proof of the following result from [7, p.276]:

COROLLARY 4.2. Suppose F is a finite field with q elemenis. For any
nonsingular cubic form [, the number of inflectional triangles of [ defined
over Fl is 0, 1, or 4 if g=1mod3; itis O or 2 if g=—1mod3.
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Proof. Since F' 1s finite, the action of I" on T(f) factors through a cyclic
group. If there 1s at least one fixed triangle %, then Corollary 4.1 yields a
decomposition

TN = {To} [T X(N(K, ),

where N(K,a) = F[t] with £ = Ng(a). If N(K,q) is a field, then it must be
a cyclic extension of F', hence F' contains a primitive cube root of unity and
therefore ¢ = 1 mod 3. Similarly, if N(K,a) ~ F x F x F, then F contains a
primitive cube root of umty. Thus, if ¢ = —1 mod 3, the I'-action on T(f)
has either O or 2 fixed points. If ¢ = 1 mod 3 then F contains a primitive
cube root of unity and either the polynomial x> — Ng(a) is irreducible or it
splits into linear factors. Therefore the T'-action on T(f) has either O, 1 or
4 fixed points.

We next spell out the special case of Corollary 4.1 where the cubic étale
F-algebra K 1s the split algebra F X F X F:

COROLLARY 4.3. There is a basis of 'V in which [ fakes the generalized
Hesse normal form a,x3 + 25 + asx3 — 3\x1x2x3 for some ay, da, az € F*
and A € F if and only if T has a fixed point Ty € T(f) and acts trivially
on Ty (viewed as a 3-element subset of £(f)).

EXAMPLE 4.4. Let K be a cubic étale F-algebra and let f(X) = Tg(X3).
By Corollary 4.1 we have

LN =XE [TXMEK, D) and T()~{To} ] X(MK,1).
The T -sets }Z(M(K, 1)) and X (N(K 3 1)) are determined in Example 2.3:
X (MK, 1)) = X(F) [] XD * FlwD [] XK & Flw])

and

X(NK, 1) ~ X(F) ][] X(Fw]).

The map X(i): Z{(M(K, 1)) — %(N(K, 1)) functorially associated to the
inclusion i: N(K,1) — M(K,1) maps X(F)[[X(D = Flw]) to X(F) and
X(K @ Flw]) to X(F|w]).

If K~FxFxF, then f(x,X2,%3) = X, + X3 + X3 so f has a Hesse
normal form. If K 2 F x F x I, then the I'-action on X(X), hence also
on X(K ® Flw]), 1s nontrivial. Therefore it follows from Corollary 4.3 that
J has a generalized Hesse normal form over F if and only if the T -action
on X(D x Flw]) is trivial. This happens if and only if D ~ F[w], which is
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equivalent to K ~ F[v/d] for some d € F*, by [8, (18.32)]. Indeed, for
X = x; + x2vd + x3vd?, computation yields

fX) =305 + dg + & + 6dxxx3) .
Corollary 4.3 applies in particular when F 1s the field R of real numbers:

COROLLARY 4.5. Every nonsingular cubic form over R can be rediiced
fo a generalized Hesse normal form.

Proof. 1t 1s clear from the Weiersirass normal form that every nonsingular
cubic over R has three real collinear inflection points, see [3, Prop. 14, p.305].
The inflectional line through these points is fixed under T, hence the T -action
on T(f) has at least one fixed point. The same argument as in Corollary 4.2
then shows that T" has exactly two fixed points in T(f). Let Ty, T; € T(f)
be the fixed inflectional triangles. Assume the T'-action on Ty (viewed as a
3 -element set) is not trivial, hence K ~ R x C 1n the notation of Corollary 4.1,
we shall prove that the T'-action on T; 1s trivial. By Corollary 4.1, there is
aunt @ = (d1,d2) € R x C such that

LH=XRx O [JX(MR x C,a)).
By Theorem 2.6, we have an isomorphism of T'-sets
P: X(MR x C,a)) = 7 '(a- C*) C Pryc(C).

We identify (R x C)&®g C with C x Cx C by mapping (r,X) QY to (ry,xv,Xy)
for r € R and x, v € C. Then the T-action on Pg,c = PZ. is such that the
complex conjugation — acts by

(X1 : X1 x3) = (X1 : 33 X2)

If £ R and 5 € C satisfy € = g, and n° = 4y, and if w € C is
a primitive cube root of unity, then the proof of Lemma 2.5 shows that
7 Ya - C*) consists of the following elements :

&:n:m, € :wn o, € :wn:wy,
(§:n:uwh), (€ :wn: M), (WwE:m:7M),
(§:n:wm), (§:wn:m), (W€ :m:m).

The three points in the first row of this table are fixed under the T -action,
whereas the I'-action interchanges the second and third row. Therefore the
first row corresponds to T; under @, and the proof is complete.
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When the conditions i Corollary 4.1 do not hold, we may still consider
the 4-dimensional étale F-algebra 7'(f) such that X (T( f)) = T(f), and the
12-dimensional étale F-algebra L(f) such that X (L( f)) = £(f), which 1s a
cubic ¢tale extension of 7(f). The separability idempotent e € T(f) @ T(f)
satisfies ¢ - (T(f) ® T(f)) ~ T(f), and hence yields a decomposition

() @r T(f) = T()) x T(fo

for some cubic algebra T(f)o over T(f). Likewise, multiplication in L(f)
yields an isomorphism

e (L(H ST = L(;
hence
L) @ T(f) = L(f) X L{f)o

for some cubic algebra L(f)y over T(f)o. By functorality of the construction
of L and T, the cubic form frs over V Qp I'(f) obtained from f by scalar
extension to 7(f) satsfies

Lifrp) = L(H @r T(f) and  T(frp) = T(f) @r T(f).
Corollary 4.1 applied to fr¢s) shows that frs is isometric to

Trp(@™'X%) = 3A N H(X)

for some A € T(f)* and some a € L(f)* such that L(f)y is a Morley
I'(f)-algebra L(f)o = M(L(f),a).
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