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ON TOPOLOGICAL PROPERTIES

OF THE FORMAL POWER SERIES SUBSTITUTION GROUP

by I. BABENKO and S. BoGATYÏ*)

ABSTRACT. Certain topological properties of the group k) of formal one-
variable power series with coefficients in a commutative topological unitary ring k are
considered. We show, in particular, that in the case of k Z equipped with the discrete

topology, in spite of the fact that the group Z) has continuous monomorphisms
into compact groups, it cannot be embedded into a locally compact group. In the
case where k Q the group 2/(0) has no continuous monomorphisms into a locally
compact group. In the last part of the paper the compressibility property for topological
groups is considered. This property is valid for J(k) for a number of rings, in particular
for the group ^/(Z).

Let k be a commutative ring with identity element. We further suppose
that k is a topological ring, and if a topology is not indicated explicitly we

suppose it to be discrete. Consider the set J(k) of all formal power series

in the variable x with coefficients in k of the form:

(1) f(x) x + a\x2 + OL2x3 H x(l + a\x + a^-v2 + a„ G k.

This set becomes a group under the operation of substitution of series, then

removing parentheses and collecting similar terms (cf. [15]): fog —f(^g(x)).
The general algebraic properties of the group J(k) are studied in [15].

*) Partially supported by the grants RFSF 10-01-00257-a, RFSF 11-01-90413-Ukr-f-a and
ANR Finsler.
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The group k) is a topological group in a natural way. Namely the

set isomorphism j: kN —> k), given by (1), defines the product topology
on k). This topology coincides with the inverse limit topology of the

groups Jm{k) as follows.
Even if k is not a priori a topological ring we can supply it with the

discrete topology, as mentioned above. This defines the O-dimensional inverse

limit topology on k), cf. [2]. The latter is the strongest topology on k)
among all natural topologies apart from the discrete one.

The group k), especially in case of a field of positive characteristic, has

been of high interest in the last 15 years. Let k Zp Z/pZ be a prime field.
Known as the Nottingham group, Zp) is a pro-p group with remarkable

properties. It is finitely presented [11], hereditarily just-infinite group of finite
width [18, 14]. J(7jp) is known to be a universal pro-/? group [6]. This means
that every countably based pro-p group embeds into J(7Lp) as a topological

group. The Nottingham group J(Z*p) can be viewed as a finite index subgroup
of the automorphism group of the local field Zp((a)). This together with its

universality links Zp) to Galois theory of local fields, see [12, 24] for more
details. See also [8] for a panorama of properties of Fq) where Fq is a

finite field of characteristic p containing q — pk elements.

Some important general properties of the group k) in the case of a ring k
of zero characteristic, say k Z, Q or R, were studied in the paper [15].
The structure of k), as a topological group, is completely different from
the compact ring case. A number of questions which are trivial in the compact
ring case become substantial for J(Vl) if k is not compact. For example, it is

known [3] that any continuous action of the group k) on any compact space
has an invariant probability Borel measure. This assertion, obvious for J(JLp),
turns out to be a non-trivial fact even for J(2i) or */(R). In this paper we

try to understand the topological group structure of k) for a non compact
ring k, in particular for k Z,Q or R. Some properties of these topological

groups were obtained recently in [2, 3].
Note that the groups J(7j) and *7(R) arise naturally in algebraic topology.

The well-known Landweber-Novikov algebra (the special subalgebra of stable

cohomology operations in complex cobordisms) can be expressed as the algebra
of integer left invariant differential operators on J(R), see [5] for more details.

See also [1] for relations of */(R) with symplectic topology and J(C) with

some problems of the theory of analytic functions.

We say that a topological group G admits a continuous monomorphem
into a topological group H if there exists a continuous group-monomorphism
4>\ G —> H. Moreover, if such a monomorphism 0: G —> H is at the
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same time a homeomorphism onto its image we say that the topological

group G is embedded into the topological group H. From this point of view
the group J(Z), although being neither compact nor locally compact, does

admit a continuous monomorphism into a compact group.
If we supply Z with the p-adic topology and if we embed Z into

the ring Z^) of p-adic integers for a prime number p, we can obtain the

simplest and most natural continuous monomorphism of J(Z) into a compact

group. The compactness of the ring Z^) in the p-adic topology implies the

compactness of the group JÇL^Ç). Moreover, J(Z) is an everywhere dense

subgroup which lies inside.

It is easy to see that Z) is a residually finite group. Moreover it is

approximated by finite p-groups for any given prime p. Thus one can obtain
other interesting continuous monomorphisms of J(Z) into compact groups,
for example into the group JÇLp).

As mentioned above, every countably based pro-p-group can be embedded

into The universality of Zp) and the approximability of J(Z)
by finite p-groups easily imply that J(7L) admits many different continuous

monomorphisms into J(7Lp). Unlike the monomorphism into JÇL^)
described above, most of these monomorphisms are unfortunately only implicit.

One of the principal purposes of this paper is to show that J{Z), supplied
with the natural topology, admits no embedding into a locally compact group.

THEOREM 1. Let k be an infinite discrete commutative ring and let the

group J{k) be endowed with the inverse limit topology. Then k) does not
admit any embedding into a locally compact group.

The following result shows that if we pass from Z to the fraction field Q
the situation becomes much more rigid.

THEOREM 2. Let k be a topological ring containing the field of rational
numbers. Then the group k) does not admit a continuous monomorphism
into a locally compact group.

Here we do not make any assumptions about either the topology of the

ring k or topological properties of the inclusion Q C k.
Finally we note that the problem of embedding into locally compact groups

for J(Z) (or k) for rings of general type) is interesting from both the

viewpoint of topology and that of dynamics, in particular when the amenability
of such groups is considered. So if k) acts on a compact space and if we



274 I. BABENKO AND S. BOGATYÏ

try to find an invariant measure for such an action, the absence of embeddings
of J(k) into locally compact groups means that the classical techniques,

see [13] or [21], cannot be applied. See also [3] for more details.

In the second part of the paper the property of compressibility of topological

groups is considered. We say that a topological group G is compressible

if G can be embedded into each neighborhood of its unit element. The

compressibility is a fractal-like property which is not intrinsic to Lie groups.
There are many natural examples of compressible groups: for example the

group of homeomorphisms of the «-dimensional ball that preserve pointwise
the boundary sphere possesses this property.

Any compact compressible group is of dimension either zero or infinity
(Theorem 3.5). However there exist many different examples of compressible

topological groups of arbitrary dimension (see Example 3.6 and Proposition

4.6).
The compressibility of J(JLp) is known [7]. We show (Proposition 4.3)

that J(k) is compressible for a large number of base rings k, for example,
for the ring of integers Z. The compressibility of a topological group G also

proves to be an obstruction for embedding G into a locally compact group,
see Proposition 3.4 below.

1. Embeddings of the group J(II)

Let the base ring k be supplied with some topology ; the case of the discrete

topology is of special interest. The corresponding inverse limit topology on
the group J(k) is considered.

The subgroups

Jn(k) — {f(x) e J(k)|ai a2 • • • a„_i =0}, n 2,3,...

are normal and form a base of neighborhoods of the unity element. It is

natural that ^7i(k) — J(k). The following sequences of nilpotent groups will
also be useful

Jm(k) J(k)/J„,+i(k), m 1,2,,.. ;

JL'(k) J-„(k)/X+i(k), m > n

We divide the proof of the above results into several simpler steps. The
verification of the following statements is not difficult and we shall omit some

parts of the proofs.
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Proposition 1.1. The mapping pn : Jn{k) -a k, pn(f) a„ G k induces

an isomorphism of the topological groups pn : k) —> k, where k is
considered as an additive group.

Proposition 1.2. If a monomorphism /: G —>• H of topological groups
is a topological embedding, then for any closed normal subgroup H\ C H the

subgroup Gi =f~l(H\) is a closed normal subgroup in G, and the induced

homomorphism offactor groups

/: G/Gx -A H/Hi

is a topological embedding.

Proposition 1.3. If X G Y is an everywhere dense subset in a space Y
having no isolated points then X has no isolated points either.

Proof. Let a G X be an isolated point in X, that is, {a} is an open subset

of X. Choose such a neighborhood Va of « in F that VaC\X {a}. Since a
is not an isolated point in Y, there exists a point b G Va \ {a} CF\I. The
set (F\ {a}) H Va is a neighborhood of b and it does not contain any points
in X. This contradicts the density of I in F.

Proposition 1.4. If a compact group G has an isolated point, then it is

finite.

COROLLARY 1.5. A topological group containing an infinite discrete

subgroup cannot be embedded into a compact group.

Theorem 1 immediately follows from the following statement.

THEOREM 1.6. If the additive group of a topological ring k contains an

infinite discrete subgroup, then the group k) cannot be embedded into a

locally compact group.

Proof. Let/: k) —> H be a topological embedding in a locally compact

group H. Consider a compact neighborhood V C H of the identity. Then

U —f~l(V) C k) is a neighborhood of the identity in k). So there exists

an index m such that k) C U. The subset /(J^(k)) C V is a subgroup,

so its closure H — /(J^(k)) is a compact group. It is easy to see that the

restriction mapping (which we denote by the same symbol) /: k) —> H
is a topological embedding. Since the subgroup Gi J^+i(k) C k) is
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closed and normal in k), the closure of its image H\ f(G\) is a closed

and normal subgroup of the compact group H. Since the subgroup f(Jm(k))
is dense in H we have f(G\) — H\ fi/(J^(k)).

According to Proposition 1.2 the induced mapping of factor groups

/: Jm+i(X) - H/Hx

is a topological embedding. The isomorphism J)„(k)/J^+i(k) ~ k of
Proposition 1.1 together with Corollary 1.5 lead to a contradiction. This

completes the proof.

2. Homomorphisms of J(Q) into compact
AND LOCALLY COMPACT GROUPS

As we saw in the introduction there are many different continuous

monomorphisms of Z) not only into locally compact groups but into

compact groups as well. The situation radically changes if we pass from
integer coefficients to rational ones.

Now we shall study the structure of continuous homomorphisms from J(Q)
into locally compact groups. Theorem 2 stated in the introduction immediately
follows from the following stronger result, which we shall prove in this section.

THEOREM 2.1. Let G be a locally compact group and cf>\ J{Q) —> G

be a continuous homomorphism. Then there exists an integer m such that
Jm(Q) C ker cj). Iffurthermore 6 is compact, then G. ker f *

We recall (compare [16]) that a group G is called (algebraically) complete

if for any g G G and any natural integer k there exists an element h G G

such that hk — g. This property is also known [25] as the divisibility of a

group.

LEMMA 2.2. If k is a field ofzero characteristic then all the groups Jn(\L),
n 1,2,... are complete. Moreover the operation of taking the root is

uniquely defined.

The proof is simple if we consider the exponential map and in fact it can
be understood from section 4 of [15]. We only note that the group J7W(Q)
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is actually the Malcev completion of Jn{Z). In other words Jn{Q) is the

minimal complete group containing Jn{Z).

LEMMA 2.3. Let G be a compact Lie group and 0: Jn(Q) —> G be a
continuous homomorphism. Then lm(0) lies in a maximal torus of G.

Proof. Without loss of generality we may assume G to be the unitary

group U(k) for some k. Let H Q)) and let Hq be the connected

component of the identity of this group. Since H is a compact Lie group, the

factor group H/Hq is finite.

Consider the sequence of homomorphisms

// /I'll,.
The above composition is trivial since J„(Q) is a complete group, so H
is a connected Lie subgroup of the unitary group U(k). Since there are

no small subgroups in Lie groups [19, p. 107], there exists a number m
such that J)n(Q) C ker0. Thus the homomorphism 0 factorizes through
the homomorphism 0: Q) —> H, so this implies the nilpotency of H.
Applying the Lie theorem [20, p. 54] to H (sometimes this result is known as

the Kolchin-Malcev theorem [16] and as the Lie-Kolchin theorem as well [26]),
we obtain that all the matrices of H have a common eigenvector. This, together
with H being a connected subgroup of U(k), implies that

H c U(l) x U(k - 1) C U(k).

Inductively applying the above Lie theorem k times we obtain that H lies in

a maximal torus of U(k).

By [15, theorem 3.4] for a field k of zero characteristic the equality

Jm+iQO L7*(k), Jnm
holds. Hence we immediately obtain

COROLLARY 2.4. Under the hypothesis of Lemma 2.3, the inclusion

^2w+i(Q) C ker0 holds.

Now we turn to the proof of Theorem 2.1. Let U C G be a compact
neighborhood of the identity. Since 0 is continuous there exists n such that

#{c7„(Q)) c U
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Thus we have the mapping 0: J7„(Q) —> G where G — 0(J^(Q)) is a

compact group. According to Pontryagin's theorem [23, theorem 68], G is

developed into an inverse sequence of compact Lie groups:

(3) Gi G2 Gk i G.

Let 7r*: G —> G* be the projection of the limit group on the k-th term
of (3). Let 0£ — 7Tjt o 0? £=1,2,... .By applying Corollary 2.4 to each of
the homomorphisms 0*: Jn{Q) —> G* we get J2w+i(Q) C ker0t for all k.
This implies

(4) Jin+i(Q) C ker0,

so the first part of the theorem has been proved.
In the case of a compact group G we can set n — 1 in (4), which finishes

the proof.

REMARK 2.5. If a topological ring k admits a continuous monomorphism
into a compact ring k' then the group k) clearly admits a continuous

monomorphism into the compact group If we pass from the compact
case to the locally compact one we have quite a different situation. The ring
of rational numbers Q equipped, for example, with the discrete topology
admits continuous monomorphisms into locally compact rings, for example,
into the ring of p-adic numbers Q(p>. Theorem 2.1 shows that if we pass
from Q to the group J{Q) the above property completely disappears. The
latter group cannot admit any continuous monomorphism into any locally
compact group. If we have a continuous monomorphism Q —> Q^ the

corresponding continuous monomorphism J7(Q) —> is well defined
but J(Q(p)) is not locally compact.

3. Compressible topological groups

DEFINITION 3.1. A topological group G is called compressible if for any
neighborhood of the unit e G U C G there exists a homomorphic embedding
h\j\ G —> G such that Imhy C U. The corresponding embedding hy is

called a compression.

EXAMPLE 3.2. Let H be a topological group and let G — HN be a

countable direct product. It is easy to see that the group G is compressible.
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All right shifts

h„(9i,gi,...) (e,e,... ,e,gug2,...), «=1,2,...
where e is the identity of G and g\ on the right hand side is in the (« + l)-th
position, can be taken as corresponding compressions.

The situation can be radically different in the case of limit groups of
inverse sequences of topological groups. For example, let us assume in (3)
Gk to be S"1 for k — 1,2,... and let the homomorphism ir^+1 be the p-fold
covering map for all k. In this case the corresponding limit group G is the

so-called p-adic solenoid, and it is not a compressible group.

EXAMPLE 3.3. Consider the group G Homeo+[0,1] of homeomor-

phisms of the interval [0,1] preserving the endpoints. We suppose that G is

equipped with the natural topology of a metric space homeomorphism group.
Let / G G. We assume

hn(f)(x) — -f(nx) 0 < x < — ; hn(f)(x) — x, — < x < 1

' n n x 7 n

It is clear that hn is an embedding of G into itself for any n. Moreover,
for an arbitrary neighborhood U C G of the identity e — e(x) x, there
exists n such that lmhn C U. Thus the mappings hn, n 1,2,... form
a system of compressions on G. Note that the Thompson group F [9] is

naturally embedded into Homeo+[0,1], and this embedding is compatible
with the compressions h2k, k — 1,2,... Thus h2k, k — 1,2,... are the

compressions of the group F if it is supplied not with the discrete topology
but with the topology induced from the embedding F C Flomeo+[0,1].

Compressibility turns out to be an obstruction for a group to be embeddable

into a locally compact group.

Proposition 3.4. A compressible group containing an infinite discrete

subgroup cannot be embedded into any locally compact group.

Proof. Suppose the contrary and let G C K where G is a compressible

group and K is locally compact. Consider an arbitrary compact neighborhood
of the identity V C K, and let U — V fi G be the corresponding neighborhood
of the identity in G. Consider a compression hu'. G —> U Cf. It induces

an embedding hu : G —> hu(G) where the group hu(G) is compact. This
contradicts Corollary 1.5 since G contains an infinite discrete subgroup.
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The homeomorphism group G in Example 3.3 contains some infinite
discrete subgroups. The subgroup generated by the mapping f(x) — x2 is precisely
of this type, so the group G cannot be embedded into a locally compact group.

THEOREM 3.5. Any compressible compact group is zero-dimensional or
infinite-dimensional.

Proof. Let G be a compressible compact group of finite positive dimension

n — dim G > 0. By a theorem due to Pontryagin [23, Theorem 69], there exists

a zero-dimensional normal subgroup N in G such that the factor group G/N
is a Lie group. Let pu : G —> G/N be the projection. Since Lie groups have no
small subgroups there exists a neighborhood V of the identity p^(e) in G/N
which does not contain any nontrivial subgroups. Consider the neighborhood
of the identity U — p/jl(V) in G and let hij\ G —> G be a corresponding

compression. As the subgroup H — pN(fiu{Gf) is in V, it is trivial. This

implies that hu(G) C N. The above inclusion contradicts the dimension mono-
tonicity principle. So the group G cannot be of finite positive dimension.

The compactness hypothesis in Theorem 3.5 is significant.

EXAMPLE 3.6. For any natural number n there exists an algebraically
complete, connected, locally connected, separable, metrizable, compressible

group G„, such that dimG„ n. In fact, for any n G N, Keesling [17]
constructed a connected, locally connected, algebraically complete group
Kn C R"+1, such that dimKn — dim(jST„)N — n. According to Example 3.2,

G„ — (Kn)N is just the desired group.

Similar examples can be constructed in the class of more special groups
like the substitution groups k), see Proposition 4.6 below.

4. Dilation and compressions on the group J{Vl)

For an arbitrary ring k the group k) admits two important topological
endomorphisms which we describe in this section. For any element fix) £= k)
defined by Formula (1) and for any t G k we set

(5) St(f) ^f(tx) x(l + ta ix + t2a2x2 +
The second part of equality (5) correctly defines St for all i £ k, and the

first part of (5), which should be understood formally, implies that St is an
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endomorphism of the group k). If t is not a zero divisor in k then St is

an algebraic monomorphism. Furthermore if k is discrete (the case we are
interested in) then St is an embedding of k) into itself. Let the topological
endomorphism St introduced in (5) be called a dilation of k) corresponding
to a parameter t G k. For any t,r G k, (5) directly implies StoSr S[r. Thus,

if t is invertible in k, then St is an automorphism of k), and St realizes

an embedding of the (multiplicative) group of the invertible elements of the

ring k into the automorphism group Aut(J(k)).
To define the other special mapping of k) into itself, we rewrite (1) as

follows

where h(x) a.\ + (x^x + is a formal power series with coefficients in k.
Furthermore, for any natural integer s we set

where the right hand side means a binomial series expansion together with
the raising of h{s2jd) to powers. To prove the correctness of (6) we use the

following fact from elementary analysis.

LEMMA 4.1. For any natural integer s, all positive index Taylor coefficients

of the function

be the expansion of u(z) at zero. The integrality of ßk, k — 1,2,... and

the divisibility of these coefficients by s will be proved by induction. By
expanding u(z) into a binomial series we obtain ß\ — s. Suppose that the

statement is proved for all ßk, k < n, and we prove it for ßn. Setting
uk(z) ß\Z + ßzZ2 H 1- ßkZk we obtain

f(x) x(l + xh(x)),

(6)

are integers and divisible by s.

Proof. Let
m(z) — 1 + ß\Z + ßzZ2 +

(7)

u(z)S — (1 + M„_i(z) + ßnzn + ö(zw+1))

(l + M„_i(z) + ßnz") + 0(z"+1)

— (l + U„-i (z)) + sß„zn + 0(zn+1)
s

— 1 + SUn-l(z) + Cks(un_i(z)t + sßnZn + 0(zn+l).
k=2
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Since all the coefficients of the polynomial are divisible by s,
s

the coefficients of J] CJ(m„_i(z))* are divisible by s2. By setting the sum
k=2

of coefficients attached to zn in the right hand side of (7) equal to zero, and

using the functional equation u{zf — 1 + s2z we obtain, for sß„, an integer
expression divisible by s2.

REMARK 4.2. The above lemma is a particular case of a general
result obtained by Eisenstein, see [22, sec. 8, chap. 3]. If a series v(z)
ßiz + ßiz2 + having rational coefficients is an algebraic function in z then

there exists a natural number T such that the series v(Tz) — ßiTz-\-ß2T2z2-\~...
has integer coefficients. The smallest T which satisfies the above condition is

the so-called Eisenstein index. It can be expressed by prime divisors of the

coefficients of the equation for v(z). Sometimes this expression can be rather

complex, which we can see in the simplest case (i>(z) + l)J 1+z we are

interested in. Lemma 4.1 shows that in the situation under consideration we
can choose T s2. The quantity T — s2 exceeds, as a rule, the corresponding
Eisenstein index but it is sufficient for our purposes (cf. [22, sec. 8, chap. 3]).

It is clear that for an arbitrary natural integer s all power series having
the structure

f(x) — x(l + ol\x? + azx2* H h a„xns + a„ ek

form a closed subgroup in ßf(k), which we denote by J(.y)(k) For any s

we have the obvious inclusions ^)(k) C Js{k). The subgroups k) have

been closely studied in the case of a field k of positive characteristic, see,

for example, [4, 7]. Some results obtained in this article are not related to
phenomena of positive characteristic but they are of general nature and are

subject to the compressibility scheme mentioned above.

Proposition 4.3. For an arbitrary natural integer s the mapping
is well defined, and it is a continuous homomorphism from the group k)
into J(S){k). If s — s\ is not a zero divisor in k then Qs is a monomorphism.
Moreover if k is discrete, then ©^ is an embedding. If s is invertible in k,
then ©^ is an isomorphism of k) onto the group J(S)(k) •

Proof. Lemma 4.1 immediately implies that ©^ is well defined. If k is

a discrete ring the continuity of the above mapping is obvious. In the general
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case we proceed as follows. If f(x) — x(l -\-xh(x)-\-0(xk+2)), where h(x) G k[x]
is a polynomial of degree k, then (6) implies

©//W) 41 + + OS#i+2,S,

where H(x) G k[x] is a polynomial of degree & + 1. Moreover

H(x) + 1 (1 + s2xh(s2x))* mod /+2

So the coefficients of H(x) are expressed by the coefficients of h(x) by means

of universal integer polynomials. This implies the continuity of @5. The formal

presentation ©s — $s o $si implies that 05 is a homomorphism ; here Ss2 is
the dilation with the parameter s2 s21 and

(8) es(f(x)) =f&)l.
If f(x) x(l + anxn + where a„ ^ 0, then we have from (6)

0i(/) ,*(l + + OÇ#*»))

This implies that 0^ is a monomorphism in the case where s is not a zero divisor

in k. Finally, we note that for an arbitrary natural integer n, formula (6)
implies the existence of the induced homomorphisms 0": Jn~l{k) —> Jsn~l{k).
By virtue of all the above arguments, 0" is a monomorphism if s is not a

zero divisor in k. It remains to note that the discreteness of k implies the

discreteness of the groups Jn{k), n — 1,2,... i.e. the monomorphisms 0"
are topological embeddings. It is easy to see that

0, - fim©",

which implies that 0^ is an embedding. Finally, let s be invertible in k, and

let

(9) £(/»>- (fuhjl
then the mapping

@S ÖS-2O0S: Jw(k)->J(k)
is well defined. The continuity and the fact that ©5 is a monomorphism can
be verified in the same way as for 05. Formulae (8) and (9) immediately
imply the equality 0^ o ©^ id. This completes the proof.
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DEFINITION 4.4. We call the endomorphism @5, introduced in (6), a

compression in the group J7(k) with coefficient s.

REMARK 4.5. If a ring k contains the field of rational numbers Q, we
can eliminate the dilation by simply setting — 0S, where 0S is defined

by (8).

Proposition 4.6. There exists a topological ring with unity k such

that the substitution group k) is a one-dimensional separable metrizable

compressible group.

Proof. Let i2 be the Hilbert space of square-summable real sequences.
Consider the Erdös space E which is the subset of i2 that consists of
sequences of rational numbers. Endow E with a ring structure as follows. Let
an element of i2 have coordinates x (xo, ai, X2,... and write this element

in the form x — (ao,ä), where x contains all the coordinates except Ao. To
define a multiplication on i2 we set

xy (xoyo x0y + yox + xy),

for two vectors x — (xo,Â) and y (yo,y), where xy is the coordinate-wise

multiplication. It is clear that i2 supplied with such a multiplication becomes

an algebra with unit 1 (1,0), and so E becomes a sub-ring with unit (and

even a Q-algebra). We take the topological ring E just defined as the base

ring k. The topological space E is one-dimensional and all its finite powers
are homeomorphic to itself, so they are also one-dimensional. Its countable

power £"n is also one-dimensional [10, examples 1.2.15 and 1.5.17]. Thus the

substitution group J(E) yields the desired example. Since E is a Q-algebra,
the homomorphisms (8) form a system of compressions on J(E).
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