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The Hurwitz continued fraction expansion
as applied to real numbers

David Simmons

Abstract. Hurwitz (1887) defined a continued fraction algorithm for complex numbers which

is better behaved in many respects than a more "natural" extension of the classical continued

fraction algorithm to the complex plane would be. Although the Hurwitz complex continued

fraction algorithm is not "reducible" to another complex continued fraction algorithm, over

the reals the story is different. In this note we make clear the relation between the restriction

of Hurwitz's algorithm to the real numbers and the classical continued fraction algorithm.

As an application we reprove the main result of Choudhuri and Dani (2015).

Mathematics Subject Classification (2010). Primary: 11A55, 11J04.

Keywords. Continued fraction expansion, Diophantine approximation.

1. Hurwitz's algorithm

Let x be a complex number such that x ^ Q(i) The (positive) Hurwitz
continued fraction expansion of x (see [Hen2, Henl, Hur]) is defined to be the

expression

1

(1.1) ao H

a i H

Û2 +

where the Gaussian integers (an)g° (the partial quotients) and the complex
numbers (x„)^° are chosen recursively according to the Hurwitz algorithm-.

• Xo x.
• If x„ is defined, then an is the Gaussian integer closest to x„, which we

denote by [x„].

' The tiebreaking mechanism is not relevant for the purposes of this paper, but for the sake of
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• If x„ and an are both defined, then xn+\ l/(x„ —an).

It is not hard to see that the Hurwitz continued fraction expansion of x always

converges to x, and in fact the corresponding partial quotients are in some sense

the "best approximations possible" [Hen2, Theorem 1],

Some authors [CD, KU] also consider the negative Hurwitz continued fraction
expansion of a number x, which is the expression

_
1 1

a o — a o

_ 1 1

a i -a i
a 2 — ' Ü2— '

where (an)g° are defined in the same way as in the positive Hurwitz continued

fraction expansion, and H n (—1 )nan. Note that by the identity
1 1

(1.2) xH =x
y + z -y - z

the convergents of the negative Hurwitz continued fraction expansion are the

same as the convergents of the positive Hurwitz continued fraction expansion.
Thus for many purposes, it is not necessary to distinguish between the positive
and negative Hurwitz expansions.

In this note, we consider the restriction of the Hurwitz algorithm to the real

line. In this case, it is clear that the numbers (xn)f and (a„)o° a'l be real.

Moreover, unlike the case of the complex Hurwitz expansion, it is possible to

say exactly when a sequence (an)f is the sequence of partial quotients of some

real number:

Proposition 1.1. 2 For a sequence of integers (an)f, the following are equivalent:

(A) The expression (1.1) is the Hurwitz continued fraction expansion of some

(,irrational) real number.

(B) For all n > 1, we have \an \ > 2, with anan+\ > 0 if equality holds.

(C) For all n > 1, we have |2f„| > 2, with 'an'an+i < 0 if equality holds.

Obviously, (B) and (C) are reformulations of each other, so we prove
(A) ^ (B):

Proof of {A) (B). By definition, for all n > 0 we have \xn — an\ < 1/2 and

thus |x„+i| > 2 and \an+\ \ > 2. If equality holds, then an+\ has the same sign
as x„+i —an+1, which in turn has the same sign as an+2.

definiteness let us (agreeing with [Hen2]) set [x] [Rex] + i [Imx], where [f] denotes the integer
nearest to (tl, rounded down in the case of a tie.

2This proposition is not original; the wording of [CD] seems to suggest that it was proven in the
difficult-to-find [KU],
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Proof of (B) => (A). For each n, N with n < N, let

1

%n,N — ~f~

1

'
• H

aN

Reverse induction on n shows that whenever n > 1, we have \xn^\ > 2 and

an [*n,N] • It follows that

\xn,M - Xk,n\ < -\Xn + \,M ~ *n + l,ivl and \xn,m ~ *n,n\<

which implies that \x„tM ~ *n,N I < ,N)-n
^

ancj tjlus for n the

limit
1

Xu lim Xfi n — (in H-
N^-oo 1

Q/i+i H

exists. We have an \xn\ and xn+\ 1 /(xn—an), and thus (1.1) is the Hurwitz
continued fraction expansion of xq.

2. Relation to the classical algorithm

We now show that the restriction of the Hurwitz algorithm to the real line is

in some sense "equivalent" to the classical continued fraction algorithm:

Theorem 2.1. The sequence of convergents of the Hurwitz continued fraction
expansion of a real number x is a subsequence of the sequence of convergents of
the classical continued fraction expansion of x. This sequence has the property
that it omits no two consecutive convergents, and it also contains all rational
approximatifs p/q that satisfy the inequality \x — p/q\ < 1/(3q2).

Proof. The key to the proof is the identity

1 1

(2.1) — =1-
1 n + 1 + y

n + y
which is easily verified for all n and y. Now let us denote the classical continued
fraction expansion of a real number x by

(2.2) b0 +
1

1

bi A

bz
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so that (è„)o° is a sequence of integers and bn > 1 for all n > 1. Let
S {n > I : bn 1}, and let S' be the unique subset of S with the following
property:

• For all n e S, we have either n e S' or n — 1 e S', but not both.

The set S' can be constructed by taking each "block" of S and selecting "every
other element", starting from the first element of that block; for example, if
S {1,4,5,6, 9,10}, then S' {1,4,6, 9}, since the "blocks" are {1}, {4,5,6},
and {9,10}.

For each n e S', in the expression (2.2) we replace

1 1

by 1

bn H (b„+1 + 1) + '

bn+1 + '•

according to (2.1); this is possible since bn 1. This results in an expression of
the form

(2.3) co + e0 + (-1 Y°

C\ + 61 + (-l)el
1

c2 + 62 + 1 )e~

where eo, ei, • 6 {0,1}, and cn > 2 for all n > I. Here, we have used the facts

that i 0 + (—1)°^ and 1 — £ 1 + (— l)1^ to represent the expressions £ and
1 — ^ in a uniform manner as 6 + (— l)6 \, where 6 e {0,1}. Repeatedly applying
the identity (1.2) yields the Hurwitz expansion of x, so the convergents of (2.3)

are the same as the convergents of the Hurwitz expansion. But these are precisely
those convergents pn-i/qn-i of the classical expansion (2.2) such that n S'.
So the sequence of partial convergents of the Hurwitz expansion is a subsequence

of the sequence of convergents of the classical expansion, which omits no two
consecutive convergents (by the definition of S'). The omitted convergents are of
the form pn-\/qn-\, where n e S', and these convergents satisfy

Pn-1
x

Ç[n—1

1 1 1

> ; r >
n—1 iP_n T Qn—l) Qn—\(Pnqn—\ T 2 4~ ^n—l) {bn 4~ tyqn—\

1

3?n-l

(cf. [Khi, Theorem 13]). Here we have used the fact that bn 1 for all n e S'. On

the other hand, approximants that are not convergents of the classical expansion

satisfy \x — p/q\ > 1/(2q2) [Khi, Theorem 19]. So all approximants that are not

convergents of the Hurwitz expansion satisfy \x — p/q\ > 1/(3q2).
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Aside from the relation between the sequences of convergents described in
Theorem 2.1, the Hurwitz continued fraction expansion also shares the following
formal similarity with the classical continued fraction expansion:

Proposition 2.2. Let (an)f be the sequence of Hurwitz (resp. classical) partial
quotients of a real number x. If the sequences (pn)??2 an'^ (in)-\ are defined
recursively via the formulas

(2.4) p-i 1, p-2 0, q-1 0, q-2 1,

(2.5) pn — anpn—\ Pn—2> In — @n1n—l ~b In—2>

then (pn/qn)o° 25 precisely the sequence of Hurwitz (resp. classical) convergents

of x.3

Proof. The proof of [Khi, Theorem 1] is valid for both the classical and Hurwitz
setups, since both use the same formal expressions for the convergents and partial
quotients.

However, there are differences from the classical algorithm as well. For example,

while the error terms pn/qn —x corresponding to the classical convergents
always alternate in sign [Khi, Theorem 4], the error terms corresponding to the

Hurwitz convergents can be described as follows:

Proposition 2.3. If pn/ln A the nth convergent of the Hurwitz algorithm, then

the sign of the error term pn/qn ~ x A the same as the sign of the nth partial
quotient 'an+\, he. (—l)ra+1 times the sign of the nth partial quotient a„+\.

Proof. Since xn+\ and an+\ share the same sign, comparing

Pn 1 1

— Cl§ ~b VS. X — CIo
Qn 1

an + 0 1

an +
Xn +1

yields the desired conclusion.

3 Note that in the Hurwitz case there is some ambiguity as to how to represent each convergent as

a fraction (p/q vs. (—p)/(—q)), and this proposition gives a way to resolve this ambiguity (namely
to take the sequences (pn)f and (9«)g° defined by the recursive relations). The ambiguity would be
resolved in the same way if one took the expression defining the convergent and simplified it repeatedly
according to the rules (p/q)~1 q/p and n + p/q — (nq + p)/q.
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Another difference between the Hurwitz and classical expansions is that the

Hurwitz expansion yields a faster rate of exponential growth for the denominators

of the convergents. In the classical setup, the sequence (g„)g° always satisfies

liminfn^oog„+2/qn > 2 > 1,4 but it is possible that liminf,,-^qn+i/qn 1-

By contrast:

Proposition 2.4. If pn/qn denotes the nth convergent of the Hurwitz algorithm,
then for all n > 1,

(2-6) (\an\ - (2-<p))\qn-i\ < \q„\ < (\an\ + (0 - l))|çr„_i|,

where cp denotes the golden ratio. In particular,

(2.7) \qn\ > <p\q„-i\.

Proof. For each n > 1 let yn qn-\/qn. Then by (2.4) and (2.5), we have

yo — 0, and for all n > 1 we have

1

yn
fl-n T~ yn — 1

By induction, |y„_i| <1 for all n > 1, so yn shares the same sign as an. We

will prove by induction that

(2.8) - (2 - (p) < yn-x sgn(a„) <0-1
for all n. The base case n 1 is trivial, so suppose that (2.8) holds for some

n > 1. Then

w i <
1 Kl 2

Wn \ + J«-i sgn(u„) \anI — (2 — 0) \a„\ > 3

[0-1 |fl„| 2_

[2 — 0 |a„| > 3

To complete the inductive step, we need to show that if \an\ 2, then

yn sgn(fl„+i) > 0. But this follows from Proposition 1.1, since sgn(y„) sgn(a„).
Combining (2.8) with the formula

\qn I (\an I + yn-1 sgn(a„)) \qn-i \

demonstrates (2.6). Finally, the inequality \an\ >2 gives (2.7).

4 In general, qn+k/<ln is always at least the (k + 1) st Fibonacci number. This is because if Ft
denotes the kth Fibonacci number, then an induction argument shows that qn+k Ffc+iQn + F^qn—\.
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3. Relation with Diophantine approximation

Although the connection between the classical continued fraction expansion
of a real number x and the Diophantine properties of x has been dealt with

extensively in a number of places, the connection with the Hurwitz algorithm
has not been stated precisely before. Many results can be proven simply from
the identification of the Hurwitz convergent sequence with a subsequence of the

classical convergent sequence, i.e., Theorem 2.1. For brevity we do not list these

here. One place where a difference does appear is in the basic estimates for the

accuracy of the approximation of a convergent. In the classical setting, we have

(e.g., this follows from [Khi, Theorems 9 and 13]). By contrast, in the Hurwitz
setup we have:

Proposition 3.1. If pn/qn denotes the nth convergent of the Hurwitz expansion

of x, then

(bn + 2)q2n_x
< x —

Pn-\ <
1

qn-\ M+i

(\an \ + (cp -0.5)) '̂1-1
< x —

Pn-\ 1

q,i-1
<

(|a„|-(2.5-0))^_j

Proof. By [Khi, Theorem 5], we have

XnPn-l + Pn-2
XnQn—1 tfn—2

where xn is as in the definition of the Hurwitz algorithm, i.e.

xn — cin +
<2/1 + 1 + '

•

Thus

Pn-1

Qn—\
— Qn—1

{Qn-\Xn Pn-l T" Qn—1 Pn—2) (Pn—lXnÇln—l "I" Pn—l^n—f)

XnQn — 1 ~h tfn—2

\xn Cln + (.[n/cin —1|

Since \xn—an \ < 1/2, combining with (2.6) completes the proof.
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4. Comparison with Choudhuri and Dani (2015)

In this section we show that by combining the results of previous sections in
an appropriate way, we can strengthen a result of Choudhuri and Dani [CD], We

state and prove our theorem below and then show that it implies the main result

of [CD],

Theorem 4.1. Let (an)f be the Hurwitz partial quotient sequence of a real
number x, and fix 0 < 5 £ 1/3. For each p > 0, let

v #{(p,q) e Z2 primitive : 0 < q < p, \q(qx - p)\ <
(4.1 Ap —

log(p)
Then

,A^S ,#{7 1,...,» : \aj+i\><5_1 + (2.5-0)}
(4.2) lim inf X0 > lim tnf — — r

p-y oo n-yoo Jf. l log (|üj \ + (0 - 1))

^ v #{j l,...,n:\aj+1\>8~1-(fi-0.5)}
(4.3) hm sup Xp < hm sup —-— —

p^oo n^oo 2]/ 1 log(|<2,'| — (2 — 0))

Proof. By Theorem 2.1, the condition 8 < 1/3 implies that the set appearing in

(4.1) contains only pairs (p,q) such that p/q is a convergent of the Hurwitz
expansion of x. Thus the numerator of (4.1) is constant with respect to p along
intervals of the form (\qn-i\,\q„\), and increases by at most 1 from \q„\ — o(l)
to \qn I +o(l). It follows that liminfp^oo Xp lim inf„^oo X\q„\ > and similarly
for the limsup. Now, applying Theorem 2.1 again, we have

_ #{j l,...,n : \qj(.qjX-pj)\ <8}
M log I

To finish the proof, we have to bound this expression between the corresponding

expressions in the right hand sides of (4.2) and (4.3). And indeed, by Proposition
3.1 we have

\aj+i I > <5-1 + (2.5 — 0) =+ \qj(qjx-pj)\<8 =+ \aj + 11 > - (0 - 0.5)

and thus

#{j 1 n : Iaj+i \ > .T1 + (2.5 - 0)}
< #{j 1,..., n : Iqj(qjx - pf)\ < 5}

<#{;' 1|ay+i| > <T' — (0 — 0.5)}.

On the other hand, iterating (2.6) and taking logarithms gives
n

^log(|a/| - (2-0)) < log 1^„| < Y] log (\aJ I + (4>~

7=1 7=1

and dividing these two pairs of inequalities completes the proof.
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We now show that Theorem 4.1 implies the main result of [CD], Since the

statement of the main theorem of that paper contains a few inaccuracies, we

state a corrected version here, which is equivalent to the version that appears in
the authors' erratum (currently unpublished, but available from the authors upon
request).

Theorem 4.2 (Corrected version of [CD, Theorem 1.1]). Let Q(p,q) (aq +
bp)(cq + dp) be a quadratic form, where a,b,c,d el, ad — be 1, b 0,

and I is irrational. Let (a«)^° be the Hurwitz partial quotient sequence of |.
Let

Y
n n

a~ liminf - Y^ log \aA, a+ lim sup Y^ log laA.
n->oo n n^oo Z~'

7=1 7=1

For each A > 0 let

D~(A) — liminf —#{ / 1,..., n : |û/+i I > A}
n—>oo n

D+{A) lim sup ~#{j 1 n : |o/+i | > ^4}.
OO ^

Fix 0 < 8 < and let e(8) D~(8~1 + 1) and f(8) D + (8~1 — |). Let k > 0

be fixed and for each p > 0 let

G(p) {(p,q) e Z2 primitive : 0 < \Q(p,q)\ <8, cq + dp > k, ||(/?,<?)|| 5 p}-

Then we have the following:

(i) if a+ < oo then there exists po such that for all p > po we have

#G(p)>^-log(p);
a+ + 3

(ii) Let M max(ilog(|), |a~) if a" < oo, and let M < oo be arbitrary if
a~ oo. Then for any m > f{8), there exists po such that for all p > po

we have

#G(p) < ~ log(p).

Proof using Theorem 4.1. Let x —| and y bd. Since ad—be 1, we have

Q(p> q) (qx - p){q + y(q* - p))

and thus

(4.4) Ilm 4^^= Um '
(p,q)eG(oo) \q(qx - p)\ (p,q)eZ2 Iq(qx-p)\
IKP^III-^OO \q(qx-p) |<1

q—>00
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Moreover, the Hurwitz partial quotient sequence of x is the same as the Hurwitz
partial quotient sequence of | except for minus signs.

Fix 0 < S < i. We prove (i) and (ii):

(i) Since 1 > 2.5 — 0, there exists 0 < 8 < 8 < 1/jt < 1/3 such that
<5_1 + 1 > S _1 + (2.5 — (p). It follows that

e{8) D'ir1 + 1) < D-{8-1 + (2.5 - 0)).

Now by (4.4), we have

Xp(8)<#G(p) + C

for some constant C depending on <5 and 8 Thus if a+ < oo, then

Urninf>_limi„fxrf) » > ,(„
p->oo log(p) p-»-oo (42) a+ + (0 — 1) a+ + 3'

which implies (i).

(ii) Since | > 0 — 0.5, there exists 0 < 8 < 8 < l/jr < 1/3 such that
S-1 — I < 8 _1 — (0 — 0.5). It follows that

f(8) D + iS-1 - §) > D + (8~l - (0 - 0.5)).

Now by (4.4), we have

Xp(J)>#G(p)-C

for some constant C depending on 8 and 8 Thus

oo log(p) p^oo (4 3) a - (2 - 0)

< m
~ max(±log(§), |a-)'

which implies (ii). In the last inequality, we have used the bound

~ (2 - 0) > max (± log(|),

which follows from the fact that a~ > log(2) (cf. Proposition 1.1) together
with the numerical bound

l°g(2) - (2 - 0) > max (\log(§), ± log(2)).
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