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Rational approximation and Lagrangian inclusions

Rasul Shafikov and Alexandre Sukhov

Abstract. We show that any real compact surface S, except the sphere S2 and the projective

plane RP2> admits a pair of smooth complex-valued functions f\, fj with the property
that any continuous complex-valued function on S is a uniform limit of a sequence of

Rj{f\, fi), where Rj(z\,zf) are rational functions on C2.
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1. Introduction

This work concerns approximation of continuous functions on a compact real

surface by a special class of smooth functions. To illustrate this we consider
the one-dimensional example first. In the space of continuous complex-valued
functions on the unit circle S1 C C let 1Z C C°(S1) be the subalgebra of
functions of the form R(e'9), where 0 e [0,2;r] and R(z) is a rational function

on C with poles off S1. It follows from the Stone-Weierstrass theorem that
72 is dense in C°(51). Note that by the maximum principle the subspace of
polynomials in e'e is not dense in C°(S1). We consider the case of dimension
2. Our main result is the following

Theorem 1.1. Let S be a smooth compact real surface without boundary, and let

C°(5) be the space of continuous complex-valued functions on S. There exists

a pair of smooth functions fj : S —> C, j — 1,2, such that for every function
F e C°(5) there is a sequence {Rn(z\, Z2)} of rational functions on C2 with
the following properties:

(i) For every n the denominator of the composition Rn {f\, f2) does not vanish

on S.
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(ii) If S is not the unit sphere S2 and is not the projective plane RP2, then

{Rn(fi, fi)} converges to F in C°(5').

(iii) If S — S2, then there exists a rotation x of S2 (depending on F) such

that {Rn(fi, fz)} converges to the composition Fox in C°(S2).

(iv) If S MP2» then there exists a smooth diffeomorphism x of M P2 (depending

on F) such that {Rn(fi, ff)} converges to the composition Fox in C0(RP2)-

This result provides an affirmative answer to the question communicated to us

by Nemirovski. Note that the pair f\, f2 is independent of F, and that rational
functions in Theorem 1.1 cannot be replaced by polynomials. To see this, suppose
that for a given surface S there exist continuous functions f\, /2 such that any
continuous function on S can be approximated by polynomials in f\ and /2.
Since C°(S) separates points on S, the map / (/1, /2) : S -» f(S) c C2 is

a bijection, hence a homeomorphism. By assumption, any continuous function on

f(S) can be approximated by holomorphic polynomials, which forces f(S)
to be polynomially convex in C2. Recall that a compact set X c C2 is

polynomially convex if for every point z e C2 \ X there is a polynomial P such

that IP(z)[ > sup^g^ |T3(uc)|. However, no compact topological «-dimensional
submanifold of C" is polynomially convex, see [Sto, Cor. 2.3.5]), and this proves
the claim.

The functions f\, and /2 in Theorem 1.1 will be given as the coordinate

components of a singular Lagrangian (with respect to the standard symplectic
form (ost) embedding of S into C2. For example, in the simplest case of the

torus S1 x S1, we can take fj eldJ j — 1,2, thinking of 9j e [0,27r]
as a parametrization of each circle S1. For an arbitrary surface we employ in
Section 2 a result of Givental [Giv] (see also Audin [Aud]), who proved the

existence on S of a Lagrangian inclusion - a local Lagrangian embedding of S

into C2 that can have, in addition to transverse double self-intersection points,

singularities that are called open Whitney umbrellas', furthermore, such a map is

a homeomorphism near every umbrella. Moreover, one can find such an inclusion
without self-intersection points, i.e., a topological embedding, with two exceptions,
the sphere S2 and the projective plane RP2- These two surfaces do not admit

a singular Lagrangian embedding into C2, but can be included with transverse

double points, and so one needs more functions to generate C°(5).
Although no embedding of S into C2 is polynomially convex, we prove in

Section 3 that there exists a Lagrangian inclusion of S into C2 such that its

image is rationally convex. A compact set X in C" is called rationally convex if
for every point zeC°\I there exists a complex algebraic hypersurface passing

through z and avoiding X. This is used in the proof of Theorem 1.1 which is

given in Section 4.
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That rational convexity is closely connected with the property of being
Lagrangian became apparent from the work of Duval [Duv]. Duval and Sibony [DS]
showed that a compact «-dimensional submanifold of C" is rationally convex
whenever it is Lagrangian with respect to some Kahler form. It was further

proved by Gayet [Gay] that an immersed Lagrangian submanifold in C" with
transverse double self-intersections is also rationally convex. This was generalized
to certain nontransverse self-intersections by Duval and Gayet LDG]. Interaction
between Lagrangian geometry and rational convexity was recently explored by

Cieliebak-Eliashberg [CE] and Nemirovski-Siegel [NS] using topological methods.

A nondegenerate closed 2-form co on C2 is called a symplectic form. By
Darboux's theorem every symplectic form is locally equivalent to the standard

form

where (z, w), z — x + iy, w — u + iv, are complex coordinates in C2, and

dc i(d — 3). If a symplectic form co is of bidegree (1,1) and strictly positive, it
is called a Kahler form. A smooth function cp is called strictly plurisubharmonic
if ddc (f> is strictly positive definite. It is called a potential of co if ddccf> — co.

A real n -dimensional submanifold S c C" is called Lagrangian with respect to
co if tt>|s 0.

It follows from Arnold [Arnl] that a compact Lagrangian submanifold of
C" has zero Euler characteristic. On the other hand, according to the result of
Givental [Giv], any compact surface admits a Lagrangian inclusion into C2 (we

use the terminology introduced in Arnold [Arn2]), i.e., a smooth map t : 5 -> C2

which is a local Lagrangian embedding (i.e., i*cost 0) except a finite set

of singular points that are either transverse double self-intersections (or simply
double points) or the so-called open Whitney umbrellas. The standard open
Whitney umbrella is the map

Images of the standard open Whitney umbrella under complex affine maps that

preserve the symplectic form cost will also be called standard umbrellas. Finally,

open Whitney umbrellas are defined as images of the standard umbrella under

a local symplectomorphism, i.e., a local diffeomorphism that preserves the form

o)st. If S is orientable then each inclusion satisfies the following topological
identity

2. Lagrangian embeddings and inclusions

cost — -(dz Adz + dw A dw) — ddc cpst, fst M2 + |t«|2,

(1)
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(2) — x(S) + 2 • d — m 0,

and if S is nonorientable, then

(3) X(S) + 2 • d — m 0 mod 4.

Here /(S) is the Euler characteristic of S, d is the number of double points,
and m is the number of umbrella points.

In the orientable case, a double point should be counted taking into account
its index, which comes from some orientation on S and the standard orientation
on C2. In fact, according to the result of Audin [Aud], any combination of
numbers /(S), d, and m, for which formula (2) is valid, can be realized in a

Lagrangian inclusion. In particular, if /(5) < 0, then we may choose d 0,
and m ~x(S). This means that any orientable surface, except the sphere S2,
admits a singular Lagrangian embedding (i.e., inclusion without double points),
while the Whitney sphere W\S2 : S2 C2, where

is a Lagrangian immersion of S2 with one double point.
In the nonorientable case formula (3) is valid mod 4 according to [Aud].

Givental [Giv] showed that if /(S) < —2, then in fact we may take d 0,
that is, all such surfaces admit a singular Lagrangian embedding into C2. He
also gave an explicit construction of a Lagrangian inclusion of RP2 with two
double points and one umbrella. Recently Nemirovski and Siegel [NS] gave all

possibilities for the number of umbrella points that may appear in a singular
Lagrangian embedding of an arbitrary compact surface S. These are given by

(i) m ~x(S) and x 7^ 2, if S is orientable;

(ii) (x(S),m) (1, l) or (0,0), and m e (4 - 3/, -3/, -3/ - 4,...,/ + 4 -
4 Lz/4 + 1J}, if S is nonorientable.

In particular, all nonorientable surfaces except RP2 admit a singular Lagrangian
embedding, while Givental's inclusion of MR2 into C2 with two double points
and one umbrella has the simplest possible combination of singularities.

Suppose now that 1 : S —» C2 is a Lagrangian inclusion with umbrella

points pi,...,pm. Then, in a neighbourhood Uj of every pj, there exists a

symplectomorphism (pj : U0 Uj from a neighbourhood of the origin in C2

that maps the standard umbrella (1) to i(S) (T Uj. Any symplectomorphism cp is

locally Hamiltonian. This means that in a (simply connected) neighbourhood U
there exists a smooth function h : U -> M, called the Hamiltonian, such that the

vector field V\, uniquely defined by the equation

(4) W : M3 9 (t,s, r)—>(?+ itx,s + ist),

(5) i(Vh)cost dh,
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gives the flow </>£ on U with the property that — f. Here is

the contraction operator. Conversely, a smooth function h : C2 —> M with

compact support defines uniquely a vector field Vh that satisfies (5). The flow
of Vh generates a one parameter family of symplectomorphisms of C2. These

symplectomorphisms are the identity outside the support of h.

Let Lj be the linear translation in C2 sending pj to the origin, and let hj be

the Hamiltonian of the symplectic maps LJ1 o fjx defined in a neighbourhood

Uj of pj. Let h be a smooth function on C2 that agrees with hj in Uj and

vanishes outside a small neighbourhood Üj of Uj. Then the diffeomorphism <3>

defined by the flow cp'l is a symplectomorphism of C2 which is the identity map
outside Üj By construction, Oo; is a standard open Whitney umbrella near pj
Repeating this procedure for all umbrella points gives a new Lagrangian inclusion

(denoted again by i) with only standard umbrellas. Thus we obtain the following
version of Givental's theorem.

Proposition 2.1. Let S be a compact real surface without boundary. There exists

a Lagrangian inclusion i : S —» C2 such that all its open Whitney umbrella

points are standard. Furthermore, if S S2 or IRP2» then S admits a singular
Lagrangian embedding with only standard umbrellas and without double points.

3. Rational convexity of Lagrangian inclusions

Here we prove the following

Proposition 3.1. Let S be a compact real surface without boundary and let

l : S h> (C2,cust) be a Lagrangian inclusion given by Proposition 2.1. Then i(S)
is rationally convex in C2.

Proposition 3.1 was already proved by the authors [SS3] in the special case

of a Lagrangian inclusion with a single umbrella. We include here a detailed

presentation for convenience of the reader.

We will identify S and i(S) as a slight abuse of notation. The ball of radius

e centred at a point p is denoted by and the standard Euclidean distance

between a point p e Cn and a set Y C C" is denoted by distQ?,y). Our

approach is a modification of the method of Duval-Sibony and Gayet. The main
tool here is the following result.
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Lemma 3.2 ([DS], [Gay]). Let <p be a plurisubharmonic C00 -smooth function
on C", and let h be a C°° -smooth function on Cn. Let X {|/?| e^} be

compact. Suppose that

(1) \h\< etil)

dh 0(dist(-,S)^);
(3) \h\ with order at least 1 on S ;

(4) For any point p e X at least one of the following conditions holds: (i) h

is holomorphic in a neighbourhood of p, or (ii) p is a smooth point of S,

and cp is strictly plurisubharmonic at p.

Then X is rationally convex.

We remark that if follows from the proof of the lemma in [Gay] that in fact,

we may assume that cp is merely continuous at points where h is holomorphic.
The proof of Proposition 3.1 consists of finding the functions cp and h that

satisfy Lemma 3.2 with X S. This will be achieved in three steps: we first

construct a closed (1,1)-form co that vanishes near singular points of S and

such that cu|s 0. The form co is a modification of the standard symplectic
form cost in C2 near singular points of S. Near self-intersection points this is

done in the paper of Gayet [Gay], and so we will deal with the umbrella points.
Secondly, from co and its potential cp we construct the required function h. In
the last step we replace cp with a function cp + p, for a suitable p, so that the

pair {cp + p,h} satisfies all the conditions of Lemma 3.2.

Step 1: The form co. Our modification of the form cost and its potential is

an inductive procedure on the umbrella points. Let p\,...,pm be the umbrella

points on S, Pj — (Xj,Uj,yj,Vj). By the assumption in Theorem 3.1, after a

translation of pj to the origin, the surface S is parametrized near pj by the

mapping jr given by (1). Let Lj : (z, w) -> (z, w) - pj be the translation of pj
to the origin, so that jij Lj1 o n parametrizes S near pj.

For a function / we have dcf —fydx + fxdy — fvdu + fudv. Using
this we have Tt*dccp&l —2t2sdt - ^t3ds. Consider the pluriharmonic function

Çi — — Then n*dc^i n*dccpst- The function <pst — Çi is strictly
plurisubharmonic and satisfies

(6) x*dc(<pst-Ç1) 0.

Let cpi (<pst—Çi)°Li Since Lj are C-linear, they commute with dc. Therefore,

dc<pi\S 0 near pi and ddccpi — cost. Let r : R+ M+ be a smooth increasing

convex function such that r(t) 0 when t < s\ and r(t) t — c when t > s2,
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for some suitably chosen c > 0 and 0 < si < e2. We choose s2 > 0 so small

that the set {0 1 < £2} does not contain any singular points of 5 except p\. Let

(7) 4>i r o (pi, (DX=ddc(cj)1).

Then n*u>\ — 0 by (6). Therefore, the surface S remains Lagrangian with respect
to the form co\. This gives us the required modihcation of <ust near p\. Note that

our construction gives two neighbourhoods U\ <s U[ of p\, which can be chosen

arbitrarily small, so that cù\\ux 0 and <ui o>st in C2\U(. On the other hand,
the potential 0i is a global modification of <f>st but it remains plurisubharmonic
on C2.

Consider now the modification of 4>\ and m\ near p2 Up to an additive

constant the potential <p\ for <x>\ near p2 agrees with (0jf — £i)°Li. We construct
<p2 in the form

02 (0i - ° L' + C,

with a suitable choice of a function £2 and a constant C. The condition

jt2<7c02 0 is equivalent to

n*dc((<pst - £1) 0L1- £2) 0.

This can be achieved by choosing

£2 —2x\x - 2y\y — ViV — 3u\U.

Then dccj)2\S 0 near p2. Further, 4>2{p2) 0 by a suitable choice of the

constant C, and ddc<p2 — co1. Now take 02 r o 02, where r is as above, and

set ü)2 ddc(p2- This gives the required modihcation near p2-

This procedure can be repeated for all other pj, j =2,... ,m. Note that at each

step the modihcation of the function 0/_j is obtained by adding linear terms in

(x,u,y, v) precomposed with a translation. This ensures that the form coj remains

unchanged in the complement of some small neighbourhood Uj of the point pj
For the same reason, the function 0/ remains globally plurisubharmonic, which
is, in fact, strictly plurisubharmonic outside the union of the neighbourhoods Uj.
We repeat this procedure m times for all umbrella points to obtain the function

0 and the form m.

Denote by pm+\,..., pn the double points of S. Then [Gay, Prop. 1] gives
further modification of the form œ and its potential 0 near the double points.

Combining everything together yields the following result.
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Lemma 3.3. Given e > 0 sufficiently small, there exists a (I, I)-form a) and
0 < e' < e such that

(i) 0;

(ii) w co on G2 \ (L)^=lB>(pj ,e)j.
(iii) œ vanishes on E(pj,e'), j I,N.
Furthermore, there exists a smooth function cf> on C2 such that ddccp w.
The function cf> is plurisubharmonic on C2, and strictly plurisubharmonic on

C2\(lf=1B (pj,e)).

Step 2: The function h. Let i : S C2 be a Lagrangian inclusion, and f be

the potential of the form w given by Lemma 3.3. For simplicity we drop tilde
from the notation. We recall the construction in [DS] and [Gay] of a smooth

function h on C2 such that \h\ |s e$ and 3h(z) 0(dist(z, S)6).
Let S be a deformation retract of S. Note that it exists because near an

umbrella point the surface S is the graph of a continuous vector-function. Let

Yk, k 1be the basis in H\ (S,Z) Hj (S, Z) supported on S. Using de

Rham's theorem one can find closed forms ßk on S such that f ßk &vk » and

such that ßk vanish in the balls B(pj,e) as in Lemma 3.3 around the singularities
of S. Further, there exist smooth functions fk with compact support in S such

that fk vanish on S U (U^=1B(pv-,e)), and for k 1 ,/,

(8) L*dc<pk i*ßk-

Indeed, for each k, we set fk A(z,w)ri + B(z,w)r2, where r\{z,w) and

r\(z, w) are local defining functions of S and A, B are some unknown functions.

Plugging this expression into (8) gives a linear system for the restrictions of A

and B to S that can be solved. A suitable extension of this solution with support
in S gives the result. Note that near singular points the extension is identically
zero.

For Xk > 0 the function f + J2lj=i agrees with f on S. For sufficiently
small Àk it is strictly plurisubharmonic outside the balls B(p7-,e) and globally
plurisubharmonic since the functions fk vanish in M{pj,e). Further, there exists

a choice of Xk and M > 0 such that for the function

/

(9) f +
7 1

the form i*dcf is closed on S and has periods which are multiples of 2n.
Then there exists a C°°-smooth function /i : S -> M/27tZ that vanishes on
the intersection of S with B(pj,e), j — 1 and such that i*dcf dp.
By [HW], there exists a function h defined on C2 such that
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h\s e*+iß\s

and 9/z(z) 0(dist(z, S)6). It follows that </> —log|/z| vanishes to order 1 on S.
Note that h is constant near singular points of S. Finally, the function h can be

suitably extended to C2 preserving the inequality given by (1) in Lemma 3.2.

Step 3: The function (p. A closed subset K in C" is called locally polynomially
convex near a point p e K if for every sufficiently small s > 0 the intersection

K nl(p,e) is polynomially convex in C". Again, for simplicity of notation we
denote by cp the function (9) constructed in Step 2. It does not yet satisfy the

conditions of Lemma 3.2 because there are still some smooth points on S where

the function h is not holomorphic and cp is not strictly plurisubharmonic. For
this we will replace (p by a function f — (p + c p, where the function p will be

constructed using local polynomial convexity of S, and c > 0 will be a suitable

constant.
We recall our result from [SSI, SS2],

Lemma 3.4. Let S be a Lagrangian inclusion in C2, and let Po,...,pn
be its singular points. Suppose that S is locally polynomially convex near

every singular point. Then there exists a neighbourhood ß of S in C2

and a continuous non-negative plurisubharmonic function p on Fl such that
S D Fl {p e Fl : p{p) 0}. Furthermore, for every 8 > 0 one can choose

p (dist(z, S))2 on Fl \ 8); in particular, it is smooth and strictly
plurisubharmonic there.

The standard open Whitney umbrella is locally polynomially convex by [SSI],
and S is locally polynomially convex near transverse double self-intersection

points by [SS2]. For the proof of the lemma we refer the reader to [SS2].
To complete the construction of the function (p, we choose the function p in

Lemma 3.4 with 8 > 0 so small that the balls B(pj,8) are contained in balls

B(pj,e'/2) given by Lemma 3.3. Note that p is defined only in a neighbourhood
ß of S, but we can extend it as a smooth function with compact support in C2.
Consider now the function

<p (p + c p.

We choose the constant c > 0 so small that the function <p remains to be

plurisubharmonic on C2. At the same time, since c > 0 and p is strictly
plurisubharmonic on S outside small neighbourhoods of singular points, we
conclude that the function <j> is strictly plurisubharmonic outside the balls B(pj, 8).
It also follows that X {\h\ e^} S. The pair <j> and h now satisfies all the

conditions of Lemma 3.2. This completes the proof of Proposition 3.1.

For the proof of Theorem 1.1 we will also need the following result.
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Corollary 3.5. Suppose that i : S -> C2 is a Lagrangian inclusion of a compact
surface. Then i(S) admits a Stein neighbourhood basis.

Indeed, one can take neighbourhoods of l(S) of the form {p < e} where p
is a function given by Lemma 3.4 and e > 0 is small enough.

4. Rational approximation on surfaces

The classical Oka-Weil theorem (see, e.g., [Sto]) states that any holomorphic
function in a neighbourhood of a rationally convex compact set X c C" can be

approximated uniformly on X by rational functions with poles off X. Rational

functions can be replaced by holomorphic polynomials if X is polynomially
convex. We will need the following approximation result, which is due to O'Farrel-
Preskenis-Walsch [FPW] (see also Stout [Sto]):

Let X be a compact holomorphically convex set in C", and let Xo be a

closed subset of X for which X \ Xo is a totally real subset of the manifold

Cn\Xo A function f e C (X can be approximated uniformly on X by functions
holomorphic on an neighbourhood of X if and only if f |x0 can be approximated
uniformly on Xo by functions holomorphic on an neighbourhood of X.

Recall that a set X is called a totally real set of a manifold M if there

is a neighbourhood U of X in M on which is defined a nonnegative strictly
plurisubharmonic function </> of class C2 such that X — {p e U : tfi(p) — 0}.
The following result can be found in Stout [Sto, Thm 6.2.9]:

A compact connected subset X of a Stein manifold M is holomorphically convex

if and only if there is a sequence Q.j of domains in M with Ltj d when

j <k, and with (""]• Qj X such that iffor each j, (STV, projy) is the envelope

of holomorphy of £12j, then Q- proj7(£27) X.

Suppose now that X t(S) is a Lagrangian inclusion given by Proposition 2.1;

it is rationally convex by Proposition 3.1. Let X0 be the set of singular points
of X, i.e., the set of double points and Whitney umbrellas. Then X \ X0

is a smooth totally real submanifold, and so for each point p e X \ X0

there exists a neighbourhood in which the square of the distance to I is a

strictly plurisubharmonic function. From these neighbourhoods we can construct
a neighbourhood U D X \ X0 with a nonnegative strictly plurisubharmonic
function on it that vanishes on X \ X0 This shows that X \ Xo is a totally real

set in C2 \ XQ

The set Xo is finite, hence it satisfies the assumption of the O'Farrel-Preskenis-
Walsch theorem. By Lemma 3.5, IcC2 admits a Stein neighbourhood basis
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{}j Each is Stein, therefore, Ùj — Qj, and it follows from above that X is

holomorphically convex. Thus, all conditions in the result of O'Farrel-Preskenis-
Walsch, stated above, are satisfied, and we conclude that any continuous function

on X can be approximated by holomorphic functions in a neighbourhood of
X, hence by rational functions as seen by the Oka-Weil theorem. Combining
everything together gives the following.

Proposition 4.1. If t : 5" —C2 is a Lagrangian inclusion with standard umbrellas,
then any continuous function on i(S) can be approximated uniformly on i(S) by
rational functions with poles off i (S).

With this the main result is easily verified.

Proof of Theorem 1.1. (i and ii) By Proposition 2.1, there exists a singular La¬

grangian embedding / {f\, f2) ' S -> C2 with standard umbrellas as the

only singularities. The required statements now follow from Proposition 4.1.

(iii) Formula (4) gives an immersion of the sphere S2 into C2 with one double

point, but this does not give the approximation result because the coordinate
functions attain the same value at the double point. However, by the Borsuk-
Ulam theorem (see, e.g., [Hat]), any continuous function F : S2 —> M2 has

at least two antipodal points p and q on S2 where it attains the same value.

Hence, it can be approximated by rational functions but only after we apply
a rotation of S2 that sends p and q to the north and south poles of S2,
which are the preimages of the double point.

(iv) A similar story holds for EP2, for which one needs two double points. Let

/ (/1, ff) : EP2 -* C2 be the Lagrangian inclusion with two double

points and one standard umbrella. By the Whitney approximation theorem

it suffices to approximate any smooth function F : E P2 C. Since E P2

cannot be diffeomorphic to any subset of C, a generic point in the image
of F will have at least two pre-images. Applying a diffeomorphism r
of RP2 we may assume that there exist points p2,qj e E P2 such that

(Fot)(pj) (For)(qf), j 1,2, and fj(pk) fjiPk), M 1-2. Then

by Proposition 4.1, F or can be approximated by rational combinations of
/1 and f2.
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