Zur Theorie der Kapillarschwingungen eines Flüssigkeitstropfens

Autor(en): Fierz, M.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 16 (1943)

Heft IV

PDF erstellt am: **23.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-111408

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Zur Theorie

der Kapillarschwingungen eines Flüssigkeitstropfens

von M. Fierz.

(9. VI. 1943.)

Es wird gezeigt, dass ein schwingender Flüssigkeitstropfen, dessen Zustand durch die Zahlen l, m charakterisiert ist, ein Impulsmoment um die z-Achse besitzt. Die bei grossem l geringe Ausstrahlung eines geladenen Tropfens muss daher auch als "Drehimpuls-Auswahlregel" aufgefasst werden.

Im Hinblick auf die metastabilen Zustände schwerer Atomkerne hat S. Flügge¹) die Kapillarschwingungen eines geladenen
Flüssigkeitstropfens untersucht. Insbesondere hat er die elektromagnetische Ausstrahlung eines Tropfens berechnet, der in einem,
durch die "Quantenzahlen" l,m charakterisierten Zustande
schwingt. Flügge hat stehende Wellen betrachtet. Deshalb besitzt
der Tropfen in einem solchen Zustande kein Impulsmoment. So
scheint es, als ob in diesem Falle die bei grossem l auftretende
geringe Ausstrahlung nicht auf grosse Impulsmomentänderungen
des Tropfens bei der Lichtemission zurückgeführt werden könne
(l. c. S. 374 u. 385).

In dieser Arbeit wird gezeigt, dass auch die metastabilen Zustände des Tröpfchenmodells mit grossen Änderungen des Impulsmoments zusammenhängen, da auch hier die Zahlen l,m bei sinngemässer Deutung das Impulsmoment des Zustandes beschreiben.

Um dies einzusehen, hat man an Stelle von stehenden Wellen um den Tropfen umlaufende Wellen zu betrachten. Dann hat nämlich der Tropfen, auch wenn er nicht als Ganzes rotiert, ein Impulsmoment.

1. Es soll gezeigt werden, dass eine Kapillarschwingung einer Flüssigkeitskugel, die durch die Zahlen l, m, die Frequenz ω und die Energie E charakterisiert ist, um die z-Achse ein Impulsmoment J_z besitzt, das den folgenden Wert hat:

$$J_z = m \frac{E}{\omega}$$

¹⁾ S. Flügge, Annalen d. Ph. 39, 373 (1941.)

366 M. Fierz.

Das Geschwindigkeitsfeld der Flüssigkeit leite sich aus einem Potential Φ ab, das der Gleichung

$$\Delta \Phi = 0 \tag{1}$$

genügt. Wir machen den Ansatz

$$\Phi = \beta_{l, m} r^{l} \mathfrak{P}_{l, m} (\cos \vartheta) \sin (m \varphi - \omega t)$$

$$= \beta_{l, m} r^{l} \frac{1}{i \sqrt{2}} \left[Y_{l, m} e^{-i \omega t} - Y_{l, -m} e^{+i \omega t} \right] \quad (2)$$

Die $Y_{l,m}(\vartheta, \varphi)$ sind normierte Kugelfunktionen. Entsprechend soll für die Oberfläche gelten

$$R(\vartheta, \varphi) - R_{\mathbf{0}} = \alpha_{l, m} \mathfrak{P}_{l, m} (\cos \vartheta) \cos (m\varphi - \omega t)$$
 (3)

 R_0 ist dabei der Kugelradius im Gleichgewichtszustand. Wir nehmen an, dass

$$|\alpha_{l,m}| \ll R_0$$

was zur Folge hat, dass jeweils nur die niedrigste Potenz der $\alpha_{l, m}$ in den Formeln berücksichtigt werden muss.

Unsere Ansätze unterscheiden sich von denen bei Flügge (l.c.) dadurch, dass wir umlaufende Wellen verwenden, und unsere Funktionen auf 1 normiert sind:

$$\int \mathfrak{P}^2_{l,\,m} \,(\vartheta) \, \sin^2(m \varphi \, - \, \omega \, t) \, d \, \sigma = 1$$

Aus der Bedeutung von Φ folgt

$$\left(\frac{\partial \Phi}{\partial r}\right)_{r=R} = \frac{\partial R}{\partial t} \; ; \quad \beta_{l,m} = \frac{\omega \alpha_{l,m}}{l R_0^{l-1}} \tag{4}$$

Um die Energie der Schwingungen zu berechnen, genügt es, die kinetische Energie anzugeben. Denn da die Bewegung harmonisch ist, ist die Gesamtenergie gleich der doppelten kinetischen Energie. Daher gilt:

$$E = 2 E_{\rm kin} = \varrho \int \left(\frac{\partial \Phi}{\partial x_k} \right)^2 \! d\tau = \varrho \int {
m div} \left(\Phi \cdot {
m grad} \, \Phi \right) d au \quad (5)$$

Dabei ist q die Massendichte:

$$\varrho = rac{3 \ M}{4 \, \pi \, R_0^3} \ .$$

Die Energie kann mit Hilfe des Gauss'schen Satzes in ein Oberflächenintegral verwandelt werden und man erhält unter Berücksichtigung von (2) und (4)

$$E = \varrho R_0^3 \alpha_{l,m}^2 \frac{\omega^2}{l} = \frac{3}{4 \pi} M \frac{\omega^2}{l} \alpha_{l,m}^2.$$
 (6)

Nun berechnen wir das Impulsmoment J_z :

$$J_{z} = \varrho \int \left(x \frac{\partial \Phi}{\partial y} - y \frac{\partial \Phi}{\partial x} \right) d\tau = \varrho \int \frac{\partial \Phi}{\partial \varphi} d\tau$$

$$= m \varrho \beta_{l,m} \int r^{l} \mathfrak{P}_{l,m} \left(\cos \vartheta \right) \cos \left(m\varphi - \omega t \right) d\tau. \tag{7}$$

Man hat hier zu beachten, dass das Integral über das durch die Fläche $r = R(\vartheta, \varphi)$ begrenzte Volumen zu erstrecken ist. Wir integrieren daher zuerst über r:

$$J_z = m \, \varrho \, \beta_{l,m} \int d\sigma \, \frac{R^{l+3}(\vartheta, \varphi)}{l+3} \, \mathfrak{P}_{l,m}(\cos \vartheta) \cos (m\varphi - \omega t) \quad (8)$$

Setzen wir aus (3) den Wert für R (ϑ , φ) in (8) ein, und nehmen nur lineare Terme in $\alpha_{l,m}$ mit, so folgt

$$J_{z} = m \, \varrho \, \beta_{l, \, m} \, \alpha_{l, \, m} \, R_{\, 0}^{\, l+2} = \frac{m \, \omega}{l} \, \varrho \, \alpha_{l, \, m}^{\, 2} \, R_{\, 0}^{\, 3} \, . \tag{9}$$

Durch Vergleich mit (6) folgt die Behauptung

$$J_z=m\,rac{E}{\omega}$$
 .

2. Der Tropfen besitzt, falls er elektrisch geladen ist, mit dem Impulsmoment J_z auch ein magnetisches Moment μ_z . Die Ladung habe den Wert eZ und sei gleichmässig über das Volumen verteilt. Dann wird das erzeugte magnetische Feld durch das Vektorpotential

$$A(\tilde{r}_a) = \frac{Ze\varrho}{Mc} \int d\tau \frac{\operatorname{grad} \Phi(\tilde{r})}{|\tilde{r}_a - \tilde{r}|}$$
(10)

gegeben. Der Term proportional $1/r_a^2$ bestimmt das Dipolmoment. Wir entwickeln den Nenner in (10) bis zu Termen $1/r_a^2$:

$$\frac{1}{\sqrt{r^2 + r_a^2 - 2(\vec{r} \cdot \vec{r}_a)}} \sim \frac{1}{r_a} \left(1 + \frac{(\vec{r} \cdot \vec{r}_a)}{r_a^2} \right) \tag{11}$$

Das Vektorpotential des Dipolmoments wird daher durch den Ausdruck

 $\tilde{A}_{\text{dip}}(\tilde{r}_a) = \frac{Ze\varrho}{Mc} \frac{1}{r_a^3} \int (\tilde{r}_a \tilde{r}) \operatorname{grad} \Phi(\tilde{r}) d\tau$ (12)

dargestellt. Andererseits hat das Vektorpotential eines Dipols die Form $\overline{\mu} \, \overline{r}$

$$\tilde{A} = \frac{\left[\tilde{\mu} \, \tilde{r}\right]}{r^3} \,. \tag{13}$$

Da μ in die z-Richtung orientiert ist, hat A_y an der Stelle (a): $r_x = r_a, r_y = r_z = 0$ den Wert

$$A_y^{(a)} = \frac{\mu_z}{r_a^2} \ . \tag{14}$$

Entsprechend hat A_x an der Stelle (b): $r_y = r_a$, $r_x = r_z = 0$ den Wert

 $A_x^{(b)} = -\frac{\mu_z}{r_u^2} \ . \tag{15}$

Also gilt

$$\frac{r_a^2}{2} \ (A_y^{(a)} - A_x^{(b)}) = \mu_z \,. \tag{16}$$

Betrachtet man nun aber gemäss (12) $\bar{A}_{\text{dip}}(\bar{r}_a)$ an den Stellen (a) und (b) und bildet die Grösse (16), so folgt

$$\mu_{z} = \frac{Ze\varrho}{2Mc} \int d\tau \left(x \frac{\partial \Phi}{\partial y} - y \frac{\partial \Phi}{\partial x} \right). \tag{17}$$

Daraus folgt durch Vergleich mit (7)

$$\mu_z = \frac{Ze}{2 Mc} J_z. \tag{18}$$

3. Zum Schluss möchten wir, der Vollständigkeit halber, die Ausstrahlung des schwingenden Tropfens berechnen. Diese Rechnung hat Flügge schon durchgeführt, so dass wir prinzipiell nichts Neues bieten können. Allerdings kann die Rechnung durch Verwendung normierter Kugelfunktionen wesentlich vereinfacht werden. Dadurch ist es auch möglich, einen Rechenfehler, der Flügge unterlaufen ist, richtig zu stellen.

Die Energieausstrahlung S des Tropfens im Zustande l, m ist gegeben durch den Mittelwert von

$$\frac{1}{c^3 R^2} \, \overline{[\tilde{R} \, \mathfrak{A}]^2}$$

über die Kugeloberfläche. Dabei ist

$$\mathfrak{A}(\varTheta, \varPhi) = rac{Ze\varrho}{M} \int d au \stackrel{m{ ilde{v}}}{v_{
m ret}} \,.$$

(Siehe Flügge, l. c. Formel (28), (31).) Gemäss (2) gilt

$$\mathfrak{A}\left(\Theta,\,\Phi\right) = -\beta_{l,\,m} \frac{\omega \cdot Ze\,\varrho}{M}$$

$$\int d\tau \,\mathrm{grad}\, \left[r^{l}\,\mathfrak{P}_{l,\,m}(\cos\vartheta)\,\cos\left(m\,\varphi - \omega\left[t - \frac{r}{c}\cos\vartheta'\right]\right)\right] \tag{19}$$

 ϑ' ist der Winkel zwischen den Richtungen ϑ , φ und Θ , Φ . Indem wir die $\mathfrak{P}_{l,m}$ durch die $Y_{l,m}$ ausdrücken, gilt, mit $\omega/c=k$

$$\mathfrak{A}(\Theta, \Phi) = -\frac{\beta_{l,m}}{\sqrt{2}} \frac{Ze \varrho}{M} \int \operatorname{grad} \left[Y_{l,m}(\vartheta, \varphi) e^{-i \omega t + i k r \cos \vartheta'} + Y_{l,-m}(\vartheta, \varphi) e^{i \omega t - i k r \cos \vartheta'} \right] dt \tag{20}$$

Wir betrachten im Integral den Term $\sim e^{-i\,\omega\,t}$ und entwickeln $e^{i\,\varrho\,\cos\,\theta'}$ in bekannter Weise nach Kugelwellen unter der Annahme $\varrho=k\,r\ll 1$:

$$e^{i\,\varrho\,\cos\,\vartheta'} \sim \sum_{l,\,m} rac{4\,\pi}{2\;l+1}\,rac{2^{\,l}\,l\,!}{(2\;l)\,!}\,\,i^{\,l}\,\varrho^{\,l}\,Y_{l,\,m}(arTheta\,,\,arPhi)\,Y_{l,\,m}^{m{st}}(artheta\,,\,arphi)\;.$$

Nun ist das folgende Integral zu berechnen:

$$j_{\alpha}^{l,m} = \int \left\{ \frac{d}{dx_{\alpha}} \left[r^{l} Y_{l,m} \left(\vartheta, \varphi \right) \right] \right. \\ \left. \sum_{n,t} \frac{4 \pi}{(n+1)!} 2^{n} n! i^{n} (kr)^{n} Y_{n,t}^{*} \left(\vartheta, \varphi \right) Y_{n,t} \left(\vartheta, \varPhi \right) \right\} d\tau \qquad (21)$$

 $r^{l}Y_{l,m}(\vartheta, \varphi)$ ist ein harmonisches Polynom vom Grade l. Durch die Differentiation erhält man ein solches vom Grade l-1:

$$\frac{d}{dx_{\alpha}} (r^{l} Y_{l,m}(\vartheta,\varphi)) = \sum_{m'} g_{m,m'}^{\alpha,l} Y_{l-1,m'}(\vartheta,\varphi), r^{l-1}.$$
 (22)

Die Koeffizienten $g_{m,m'}^{\alpha,l}$ sind leicht anzugeben. Wir brauchen sie jedoch nicht explizit.

Wegen der Örthogonalität der $Y_{l,m}(\vartheta, \varphi)$ ergibt die Integration

$$j_{\alpha}^{l,m} = \frac{4\pi}{(2l+1)!} 2^{l} l! (ik)^{l-1} R^{2l+1} \sum_{m'} g_{m,m'}^{\alpha,l} Y_{l-1,m'}(\Theta, \Phi). \quad (23)$$

Beachtet man nun (22), so folgt

$$j_{\alpha}^{l,m} = \frac{4 \pi}{(2 l+1) !} 2^{l} l ! (ik)^{l-1} R^{l+2} \frac{d}{d X_{\alpha}} [R^{l} Y_{l,m}(\Theta, \Phi)].$$

Also ist, da $4\pi/3$ $R^3 \varrho = M$

$$\mathfrak{A}_{\alpha}(\Theta, \Phi) = 3 \frac{\beta_{l,m}}{\sqrt{2}} Ze \omega \frac{2^{l} l!}{(2l+1)!} (ikR)^{l-1} \cdot \frac{d}{dX_{\alpha}} [R^{l}(Y_{l,m}(\Theta, \Phi) e^{-i\omega t} + (-1)^{l-1} e^{i\omega t} Y_{l,-m}(\Theta \Phi)] \\
= 3 Ze \omega \beta_{l,m} \frac{2^{l} l!}{(2l+1)!} (kR)^{l-1} \frac{d}{dX_{\alpha}} \\
[R^{l} \mathfrak{P}_{l,m}(\cos \Theta) \cos (m\varphi - \omega t + \delta_{l})]$$
(24)

370 M. Fierz.

Nun haben wir noch den Mittelwert $\frac{\lceil \overline{R}\mathfrak{A} \rceil}{R^2}$ zu bilden. \mathfrak{A} ist ein Gradient im Raume der Koordinaten R, Θ , Φ und man hat das Quadrat seiner Komponenten $\perp \overline{R}$ zu ermitteln. Wir haben also zu bilden

$$\frac{1}{4\pi} \int d\sigma \left(\mathfrak{A}_{\vartheta}^{2} + \mathfrak{A}_{\varphi}^{2} \right) = \frac{\text{const.}}{4\pi} \int d\sigma \left[\left(\frac{\partial \mathfrak{P}_{l,m}(\cos\vartheta) \cdot \cos m\varphi}{\partial\vartheta} \right)^{2} + \frac{1}{\sin^{2}\vartheta} \left(\frac{\partial \mathfrak{P}_{l,m}(\cos\vartheta) \cos m\varphi}{\partial\varphi} \right)^{2} \right].$$
(25)

Da nun $\mathfrak{P}_{l,m}(\cos\vartheta)$ cos $(m\varphi)$ eine normierte Kugelfunktion darstellt, hat der Mittelwert den Wert $1/4\,\pi\,\,l\,(l+1)\cdot\mathrm{const.}$ Somit erhalten wir

$$S = \frac{(3 Ze)^{2}}{4 \pi c^{3}} \omega^{2} \beta_{l,m}^{2} \frac{2^{2} l ! !^{2}}{(2 l + 1) !^{2}} l (l + 1) (k R)^{2l - 2} \cdot R^{2l - 2}$$

$$= \frac{(3 Ze)^{2}}{4 \pi c^{3}} \cdot \omega^{4} \alpha_{l,m}^{2} \frac{2^{2l} l !^{2} (l + 1)}{(2 l + 1) !^{2} l} (k R)^{2 l - 2}.$$
 (26)

Die "Übergangswahrscheinlichkeit" w=S/E wird daher, indem wir (4) beachten

$$\frac{S}{E} = \frac{3 (Ze)^2}{Mc^3} (kR)^{2l-2} \omega^2 \frac{2^{2l} l!^2 (l+1)}{(2l+1)!^2}.$$
 (27)

Die Ausstrahlung ist also unabhängig von m. Der Faktor $\frac{(l+m)!}{(l-m)!}$ bei Flügge (l. c.), durch den sich seine Formel von der hier abgeleiteten unterscheidet, beruht auf einem Irrtum.

Man kann diese Theorie der Kapillarschwingungen eines Tropfens quantisieren, indem man die Amplituden $\alpha_{l,m}$ als Operatoren auffasst. Dabei hat man das Spektrum, ähnlich wie in der Debyeschen Theorie der spezifischen Wärme, bei einem gewissen Wert von $l \sim A^{1/3}$ abzuschneiden, wenn A die Teilchenzahl im Kern bedeutet. Eine solche Theorie führt bezüglich der Energieausstrahlung zu den gleichen Resultaten wie die klassische Behandlungsweise. Das Quadrat des Impulsmomentes im einfach angeregten Zustande l, m ist dann ebenfalls quantisiert und hat den Wert hl(l+1).

Basel, Physikalische Anstalt der Universität.