Die Zerfallsenergien von O19, Na25, Mg27, Al28 und K42

Autor(en): Bleuler, E. / Zünti, W.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 20 (1947)

Heft II

PDF erstellt am: 25.05.2024

Persistenter Link: https://doi.org/10.5169/seals-111799

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Die Zerfallsenergien von O¹⁹, Na²⁵, Mg²⁷, Al²⁸ und K⁴² von E. Bleuler und W. Zünti.

(11. I. 1947.)

Zusammenfassung: Die Grenzenergien der β -Spektren werden mit Hilfe von Absorptionsmessungen bestimmt und aus β - γ -Koinzidenzmessungen Schlüsse auf das Zerfallsschema gezogen. Die Zerfallsenergien betragen für O¹⁹ 4,5, Na²⁵ 3,7, Mg²⁷ 2,8, Al²⁸ 4,5₅ und K⁴² 3,5₀ MeV. Bei Al²⁸ und Mg²⁷ führt der Zerfall nicht auf den Grundzustand des Folgekerns, sondern in angeregte Niveaus von 1,8₀ bzw. (vermutlich) 1,4₈ und 1,0₂ MeV. Auch bei den andern Kernen werden angeregte Niveaus festgestellt, mindestens je eines bei O¹⁹ (1,6 MeV) und Na²⁵ (1,0 MeV), mindestens zwei bei K⁴².

In Fortsetzung früherer Arbeiten*) haben wir die Zerfallsenergien und teilweise auch die Zerfallsschemata einiger weiterer leichter Kerne, welche bisher schlecht bekannt waren, untersucht. Die Methoden sind dieselben: Die aktiven Substanzen werden mit den Neutronen des Tensators¹) hergestellt, die Energien der β - und γ -Strahlung durch Absorptionsmessungen bestimmt²) und das Zerfallsschema mit Hilfe von β - γ -Koinzidenzmessungen abgeklärt. Vorläufige Resultate sind bereits kurz mitgeteilt worden**).

1. Al²⁸.

Wegen des einfachen Zerfallsschemas sei dieses Isotop zuerst diskutiert. Es zerfällt unter Aussendung eines β -Spektrums von ca. 3 MeV, das von einer γ -Strahlung von rund 2 MeV begleitet ist (vgl. MATTAUCH und FLÜGGE, Kernphysikalische Tabellen³)). Die Zerfallsenergie beträgt daher entweder (a) 3 MeV, falls das γ -Quant mit einem weichen Teilspektrum von 1 MeV gekoppelt ist, oder (b) 5 MeV, wenn der Zerfall immer auf ein angeregtes Niveau führt. Für die letztere Deutung spricht die ungefähre Übereinstimmung mit der Massendifferenz von Al²⁸ und Si²⁸ von $5,53 \pm 0,39$ MeV nach dem Isotopenbericht 1942⁴), wobei für die Massenbestimmungen die Prozesse Al²⁷ (d, p) Al²⁸ und Si²⁸ (α, p)P³¹ benutzt worden sind. Ebenso wird diese Annahme durch Messungen von Eklund und Hole⁵) gestützt, die in der Wilsonkammer keine

^{*)} H.P.A. 19, 137 (1946); 19, 419 (1946); 20, 96 (1947).

^{**)} H.P.A. 18, 262 (1945); 19, 421 (1946).

Anzeichen für ein weiches Teilspektrum finden. Andere Gründe sprechen jedoch für den Wert (a): 1. Der kleinere Wert der Zerfallsenergie passt besser in die sonst monoton abnehmende Folge der Massendifferenzen der Kerne mit gleichem Neutronenüberschuss:

Kern: Be⁸ B¹² N¹⁶ F²⁰ Na²⁴ Al²⁸ P³² Cl³⁶ ΔE : 16 12–14 10,3 7,2 5,5 3 oder 5 1,7 ~ 0 MeV.

2. HUBER, LIENHARD und WÄFFLER⁶) gelang der Nachweis des Kernphotoeffektes Si²⁸ (γ , n) Si²⁷ mit der Li- γ -Strahlung (17,2 MeV). Die Energietönung wäre nach ⁴) im Falle (a) — 15,9 \pm 0,6 MeV, im Falle (b) — 18,2 \pm 0,5 MeV, so dass die Reaktion nur für (a) möglich ist. Die aus der Reaktion Si²⁸ (α , p) P³¹ berechnete Masse von Si²⁸ müsste also zu klein sein, was leicht dadurch erklärt werden könnte, dass die Protonengruppe mit der grössten Energie nicht in den Grundzustand von P³¹, sondern in einen angeregten Zustand führt.

 β - γ -Koinzidenzen. Durch Koinzidenzmessungen konnte die Entscheidung eindeutig getroffen werden. Al²⁸ wurde durch Bestrahlung von Si-Pulver hergestellt (Si²⁸(n, p) Al²⁸) und die Absorption der β -Strahlen und der β - γ -Koinzidenzen gemessen. Die Dicke der Quelle betrug 0,218 g/cm². Das Resultat zeigt Fig. 1. Die Absorptionskurve der Koinzidenzen ist identisch mit derjenigen des β -Spektrums. Jedes β -Teilchen ist daher mit einem γ -Quant gekoppelt, sodass das Zerfallsschema der Nebenfigur und der Wert (b) der Zerfallsenergie anzunehmen ist. Die Diskrepanz mit den erwähnten Folgerungen aus der Beobachtung des Kernphotoeffektes wird durch genauere Betrachtung der fraglichen Energietönungen gelöst.

Zerfallsenergie. Die Grenzenergie des β -Spektrums ergibt sich aus der Absorptionskurve zu $2.7_5 \pm 0.10$ MeV, die γ -Energie, gemessen durch Absorption der Sekundärelektronen, zu $1.8_0 \pm$ 0.10 MeV (Fehlergrenzen). Den gleichen Wert der γ -Energie erhält ITOH⁷) im γ -Spektrographen. EKLUND und HOLE⁵) erhalten in der Wilsonkammer 2,98 und 2,05 MeV, jedoch ohne Korrektur für Vielfachstreuung, welche die Werte etwas erniedrigen würde. ALICHANOW, ALICHANIAN und DŽELEPOW⁸) messen mit einem Halbkreisspektrographen $E_{\beta} = 3,00$ MeV. Dieser ergibt jedoch häufig zu hohe Werte, vermutlich wegen des grossen Öffnungswinkels, wie die Resultate für N¹³(1,4 statt 1,2 MeV), P³²(2,05 statt 1,72 MeV) und Mn⁵⁶(3,2 statt 2,85 MeV) zeigen. Die übrigen frühern Energiebestimmungen können mangels Unterlagen nicht diskutiert werden. Mit E = 2,75 MeV und t = 2,3 min wird die für die Diskussion des Übergangscharakters häufig benutzte Grösse log ft = 4,8 (vgl. KONOPINSKI⁹)). Nach ITOH¹⁰) ordnen sich die Werte von log ft in Gruppen, deren Schwerpunkte etwa bei 3,6, 5,1 und 7,4 liegen.. Die ersten beiden sollen erlaubten Übergängen, die dritte Gruppe einfach verbotenen Spektren entsprechen. Der Zerfall von Al²⁸ in das angeregte Niveau von Si²⁸ ist demnach erlaubt, derjenige in den Grundzustand, mit einer Grenzenergie von $4,55 \pm 0,2$ MeV, mindestens einfach verboten.

Al²⁸: Absorption des β -Spektrums und der β - γ -Koinzidenzen, in willkürlichen Einheiten. Die beiden Absorptionskurven sind identisch.

Atommassen: Unter Zugrundelegung des massenspektrographischen Wertes von 26,9898.0 \pm 0.8 für die Masse von Al²⁷ (⁴)) erhält man aus der Energietönung des Prozesses Al²⁷(d, p) Al²⁸ von 5,49 \pm 0,06 MeV (¹¹)) für Al²⁸: 27,9904.9 \pm 1.1. Entsprechend dem in den Isotopenberichten üblichen Vorgehen sind dabei die Quadrate der Fehlergrenzen addiert worden. Aus der Zerfallsenergie von Al²⁸ folgt für Si²⁸ die Masse: 27,9856.0 \pm 2.4. Andrerseits muss Si²⁷, mit einer Zerfallsenergie von 3,64 \pm 0,15 MeV, eine Masse von 26,9948.0 \pm 1.8 haben. (Die Bestimmung dieser Masse aus der Schwellenenergie der Reaktion Al²⁷(p, n) Si²⁷ dürfte weniger sicher sein). Für den Kernphotoeffekt Si²⁸(γ , n) Si²⁷ folgt aus diesen Massen die Energietönung $Q = -16.9 \pm 0.3$ MeV. Bei einer Quantenenergie von 17,2 MeV ist er also energetisch knapp möglich, wenn auch, in Übereinstimmung mit dem experimentellen Befund, nur ein kleiner Wirkungsquerschnitt erwartet werden kann.

Die gegebene Masse von Si²⁸ ist um 1,17 TME kleiner als diejenige, welche aus der Reaktion Si²⁸(α , p)P³¹ berechnet werden kann. Offenbar führt hier die energiereichste Protonengruppe auf ein Niveau bei 1,1 \pm 0,4 MeV.

Der Vergleich der gefundenen Massen mit den Werten, die von BARKAS¹²) unter Annahme eines kontinuierlichen Aufbaues berechnet worden sind, zeigt, dass Si²⁸ um rund 1 MeV zu leicht ist. Dem entspricht die Tatsache, dass die Zerfallsenergie von Al²⁸ in der Reihe der ähnlichen Kerne (siehe oben) zu gross ist. Die starke Bindung von Si²⁸ ist wohl der Grund für die grosse relative Häufigkeit dieses Elementes (vgl. WEFELMEIER¹³)).

2. 0¹⁹.

Aus der Halbwertsdicke der Absorptionskurve bei dicker Quelle erhalten HUBER, LIENHARD, SCHERRER und WÄFFLER¹⁴) eine Zerfallsenergie von $\geq 3,2$ MeV. wobei das Gleichheitszeichen im Falle eines einfachen Spektrums gilt. Zu einem ähnlichen Resultat (~3 MeV) gelangen SEREN, MOYER und STURM¹⁵), die O¹⁹ durch Neutroneneinfang aus O¹⁸ herstellen. Ausserdem weisen sie eine γ -Strahlung nach, so dass der Zerfall sicher nicht einfach ist. Es ist zu vermuten, dass die wahre Zerfallsenergie bedeutend höher liegt, besonders auch deshalb, weil die schwereren Kerne mit gleichem Neutronenüberschuss Ne²³ und Na²⁵ grössere Zerfallsenergien haben (4,3 und 3,7 MeV), im allgemeinen aber innerhalb einer solchen Reihe die Werte mit steigendem Atomgewicht abnehmen (vgl. Al²⁸).

LiF-Pulver wurde bestrahlt ($F^{19}(n, p) O^{19}$) und in zylindrischer Anordnung, bei einer Schichtdicke von 0,31 g/cm², untersucht. Wegen der Störaktivitäten von N¹⁶(7,35 sek), F²⁰ (12 sek) und F¹⁸(107 min) erforderte die Auswertung einige Mühe. Die Halbwertszeit, gefunden aus über 20 Messreihen, beträgt 27,0 ± 0,5 sek (mittl. stat. Fehler), ist also etwas kleiner als der Literaturwert von 31 sek¹⁶). Die Absorptionskurve (Fig. 2) lässt eine schwache γ -Strahlung und ein komplexes β -Spektrum erkennen. Für das einfachste Zerfallsschema (Nebenfigur) erhält man die beste Übereinstimmung mit den Messpunkten durch die Zerlegung:

 $\beta_{I}: 30 \pm 10\% 4.5 \pm 0.3$ MeV (Übergang in den Grundzustand); $\beta_{II}: 70 \pm 10\% 2.9 \pm 0.3$ MeV (Übergang in angeregtes Niveau). Eine kleinere Maximalenergie kann nicht gewählt werden, da sie mit den Intensitäten bei grossen Absorberdicken nicht vereinbar wäre; bei einer grössern wäre eine viel stärkere γ -Strahlung zu erwarten. Beide Übergänge sind erlaubt: log ft = 5,5 bzw. 4,2. Der zweite Wert scheint etwas klein, es ist jedoch möglich, dass in Wirklichkeit zwei oder mehrere Übergänge auf benachbarte Niveaus führen, was mit dieser Methode nicht festgestellt werden kann.

Fig. 2.

O¹⁹: Absorptionskurve des β -Spektrums, zerlegt in zwei Komponenten von 4,5 und 2,9 MeV.

Mit einer Masse von 19,0045.4 \pm 1.2 für F¹⁹ wird diejenige von O¹⁹ 19,0093.7 \pm 3.5.

3. Na²⁵.

HUBER, LIENHARD, SCHERRER und WÄFFLER¹⁷) entdeckten dieses Isotop bei Bestrahlung von Mg mit den Li- γ -Strahlen: Mg²⁶ (γ, p) Na²⁵. Die Halbwertszeit beträgt 61,3 \pm 2,4 sek (Fehlergrenze). Ebenso können sie in der Abklingkurve der Aktivitäten, die bei Bestrahlung von Mg mit Ra-Be-Neutronen erzeugt werden, neben Na²⁴ (14,8 h), Mg²⁷ (9,6 min) und Ne²³ (40,7 sek) eine ähnliche Komponente von 64 ± 6 sek nachweisen. Aus der Halbwertsdicke der Absorptionskurve erhalten sie eine Zerfallsenergie $E \ge 3,4$ MeV.

Zur unabhängigen Bestimmung der Halbwertszeit bestrahlten wir Mg mit Be-*d*-Neutronen (Maximalenergie 5,7 MeV). Die störenden Aktivitäten von Na²⁴ und Ne²³ treten wegen des Gamow-Faktors nicht mehr merkbar auf, da die zu ihnen führenden Prozesse mit 4,5 und 5,3 MeV endotherm sind. Die Bildung von Mg²⁷ wird durch Abschirmung mit Cd herabgesetzt. Die Abfallkurve ist über 7 Halbwertszeiten exponentiell mit einer Periode von 58,2 \pm 1,3 sek (mittl. stat. Fehler).

Die getroffene Zuordnung der Aktivität konnte chemisch bestätigt werden. Da die normale Methode, das entstandene Na aus einer Lösung des bestrahlten Mg-Salzes zu fällen, undurchführbar ist, haben wir ein neues Verfahren angewendet, das in gewissen Fällen die chemische Abtrennung sehr erleichtert: Eine Aufschlämmung von feinstem MgO-Pulver in Wasser wird mit Li-d-Neutronen bestrahlt (Maximalenergie 14,5 MeV). Beim Prozess Mg²⁵ (n, p) Na²⁵ erhalten die entstehenden Na²⁵-Ionen Rückstossenergien bis zu 0,9 MeV, so dass sie zum Teil den Kristallverband verlassen und als Ionen im Wasser bleiben. Nach der Bestrahlung wird die Aufschlämmung gefiltert und das Wasser, das die aktive Substanz, aber nur wenige andere Ionen enthält, untersucht. Bei dem verwendeten Pulver konnten ca. 30% der Aktivität im Wasser nachgewiesen werden. Die Fällung der aktiven Substanz als Na-Salz gelang jedoch nur andeutungsweise, da die einzige Reaktion, die sich als einigermassen brauchbar erwies (Fällung als Na-Pyroantimoniat), zu langsam vor sich ging.

Es konnte indessen festgestellt werden, dass die Aktivität nicht einem Mg-Isotop zuzuschreiben ist, da die Fällung als Mg(NH₄)₂ (SO₄)₂ erfolglos blieb, trotzdem sie in 60 sek durchgeführt wurde und bei Mg²⁷ quantitativ verlief. Ebenso wurde die Zuordnung zu einem Ne-Isotop ausgeschlossen: Das Wasser wurde 30 sek ausgekocht, ohne dass sich die Aktivität merklich verringerte. Aus einer bestrahlten NaNO₃-Lösung konnten dagegen in 10 sek über 99% des aktiven Neons (Na²³(n, p) Ne²³) ausgetrieben werden. Die Zuordnung zu einem Na-Isotop ist somit eindeutig.

Die Absorptionskurve wurde in zylindrischer Anordnung, bei einer Schichtdicke von 2,4 mm Wasser, aufgenommen. Wegen der kleinen Präparatstärke konnte sie nur bis zu einer Intensität von 3% des Anfangswertes verfolgt werden (Fig. 3). Die Messpunkte lassen sich gut durch eine normale Absorptionskurve darstellen, welche einer Energie von 3,4 MeV entspricht, in Übereinstimmung

Die Zerfallsenergien von O¹⁹, Na²⁵, Mg²⁷, Al²⁸ und K⁴².

mit der frühern Angabe¹⁷). In Sonderversuchen mit Blei- und Messingzählrohren wurde jedoch eine schwache γ -Strahlung festgestellt. Das Verhältnis der γ -Empfindlichkeiten ($\varepsilon_{\rm Pb}/\varepsilon_{\rm Me} = 2 \pm 1$) weist auf eine Quantenenergie von mehr als 0,5 MeV hin. Die Intensität ist aber so klein, dass nicht jedes β -Teilchen mit einem γ -Quant gekoppelt sein kann, so dass ein komplexes β -Spektrum vorliegen muss. Bei Annahme von zwei Teilspektren (Nebenfigur) erhält man als beste Zerlegung:

 $\beta_{I}: 55\% 3.7 \pm 0.3 \text{ MeV}$ (Übergang in den Grundzustand) $\beta_{II}: 45\% 2.7$ MeV (Übergang in angeregtes Niveau).

Fig. 3.

Na²⁵: Absorptionskurve des β -Spektrums, zerlegt in zwei Komponenten von 3,7 und 2,7 MeV.

Beide Übergänge sind erlaubt mit log ft = 5,2 und 4,7. Diese Analyse ist sehr unsicher, die Zerfallsenergie wird hingegen innerhalb der gegebenen Grenzen liegen. Koinzidenzmessungen wären hier, wie bei O¹⁹, von grossem Nutzen, sind aber aus Intensitätsgründen nicht durchführbar.

Bei einer Masse von 24,9937.3 \pm 1.8 für Mg²⁵ (⁴)) wird diejenige von Na²⁵ 24,9977.1 \pm 3.7.

201

Wie bei Al²⁸ besteht hier eine Unsicherheit in der Zuordnung einer γ -Strahlung. Nach EKLUND und Hole⁵) ist das β -Spektrum einfach mit einer Grenzenergie von 1,77 \pm 0,09 MeV (Wilsonkammer). Zusammen mit ihrer γ -Energie von 1,05 \pm 0,08 MeV ergibt sich eine Zerfallsenergie von 2,82 \pm 0,17 MeV. Im Isotopenbericht 1942⁴) wird dagegen ein komplexer Zerfall angenommen.

Zur Untersuchung der β - γ -Koinzidenzen wurden Al-Plättchen von 1 mm Dicke bestrahlt (Al²⁷(n, p) Mg²⁷). Die Absorptionskurve der Koinzidenzen, gemessen bis zu 7% der Intensität ohne Absorber, ist identisch mit derjenigen des β -Spektrums: Jeder Zerfall führt, wie bei Al²⁸, auf ein angeregtes Niveau des Endkerns.

Um die Absorptionskurve des β -Spektrums aus dünner Schicht messen zu können, wurde Mg²⁷ aus dem bestrahlten Al chemisch abgetrennt. Da die Fällung aus der Lösung eines Al-Salzes schwierig ist, wurde die bei Na²⁵ beschriebene Methode angewendet: Eine Aufschlämmung von Al₂O₃ wurde bestrahlt und die ins Wasser ausgetretenen Rückstossatome als $Mg(NH_4)_2(SO_4)_2$ gefällt. Aus den Schichtdicken, welche zur Absorption auf den 2^{n} -ten Bruchteil der Intensität ohne Absorber notwendig sind, werden die Werte $E_n =$ 1,62 1,62 1,65 1,66 1,67 1,68 1,68 1,71 abgelesen (vgl. ²)). Die mangelhafte Konstanz deutet auf ein komplexes Spektrum hin. Tatsächlich treten nach ITOH⁷) γ -Energien von 0,64, 0,84 und $1,02 \text{ MeV} (\pm 3\%)$ auf. Die Intensitäten sind unbekannt, da uns nur ein Bericht¹⁸) über diese Arbeit zugänglich ist. Aus der Zählrohrempfindlichkeit ist auf eine mittlere γ -Energie von 1.1 ± 0.1 MeV pro Zerfall zu schliessen, während die Verteilung der Comptonelektronen in der Wilsonkammer nach RICHARDSON¹⁹) eine mittlere γ -Energie von 0,88 MeV ergibt. Es erscheint somit gegeben, versuchsweise β -Übergänge auf zwei Niveaus von 1,02 und 1,48 (= 0.64 + 0.84) MeV, im Intensitätsverhältnis von etwa 3:1, anzunehmen. Unter diesen Voraussetzungen erhält man vollkommene Übereinstimmung mit der β -Absorptionskurve für eine Gesamtenergie von 2,79 MeV. In Anbetracht der Unsicherheit der Deutung geben wir für die Zerfallsenergie den Wert $2,80 \pm 0,25$ MeV. Beide Übergänge (1,78 und 1,32 MeV) sind bei einer Halbwertszeit von 9,58 min⁵) erlaubt: log ft = 4,8 bzw. 4,7, derjenige in den Grundzustand mindestens einfach verboten.

Die Masse von Mg²⁷ wird 26,9928.1 \pm 2.3. Mit Hilfe der Energietönung der Reaktion Mg²⁶(d, p) Mg²⁷ von 4,08 \pm 0,05 MeV (¹¹)) berechnet sich die Masse von Mg²⁶ zu 25,9906.0 \pm 2.4. Dieser Wert stimmt mit demjenigen überein, der mit Hilfe der Reaktion Na²³ (α , p) Mg²⁶ gefunden wird (25,9903.7 \pm 4).

 O^{19} , Na²⁵ und Mg²⁷ sind Glieder einer ausgedehnten Reihe instabiler Kerne mit gleichem Neutronenüberschuss N-Z=3 (isotoper Spin $T_{\xi} = 3/2$). Fig. 4 gibt einen Überblick der Zerfallsenergien und -schemata. Es ist offenbar, dass sich die neuen Werte für O^{19} und Mg²⁷ besser einordnen als die frühern. Dagegen ist das Verhalten von Mg²⁷ insofern anomal, als der Übergang in den Grundzustand verboten ist, während er bei sämtlichen übrigen Kernen erlaubt zu sein scheint.

5. K⁴².

Das β -Spektrum dieses Isotopes, das mit 12,4 h Halbwertszeit in Ca⁴² zerfällt, hat nach KURIE, RICHARDSON und PAXTON²⁰) eine Grenzenergie von 3,5 MeV, wobei ein weiches Teilspektrum festgestellt werden kann (Wilsonkammer).

 K^{42} wurde durch (n, α) -Prozess aus Sc⁴⁵ hergestellt. Herrn Privatdozent Dr. G. JOVET (Lausanne) sind wir für die Überlassung des Scandiums, sowie für die chemische Abtrennung des K^{42} zu grossem Dank verpflichtet. Die Absorptionskurve (Fig. 5) ergibt eine Maximalenergie von $3,50 \pm 0,12$ MeV. Die Anfangsneigung deutet jedoch auf eine weichere Komponente von rund 30% Intensität hin, deren Energie zu etwa 1,8 MeV abgeschätzt werden kann. Mit Hilfe von Koinzidenzmessungen wurde das mit der γ -Strahlung gekoppelte β -Spektrum genauer untersucht. Die 3,5 MeV-Komponente gibt zu keinen Koinzidenzen Anlass und führt daher vermutlich in den Grundzustand (bzw. in einen angeregten Zustand von höchstens 30 keV). Die Form der Absorptionskurve der weichen Komponente ($\sim 1,8$ MeV) weicht stark von derjenigen eines einfachen Spektrums ab, so dass diese komplex sein muss. Ebenso ist die γ -Strahlung inhomogen, was aus der Absorptionskurve der Sekundärelektronen geschlossen werden kann. Eine genaue Angabe

K⁴²: Absorptionskurve des β-Spektrums, zerlegt in zwei Komponenten von 3,5 und 1,8 MeV. Die letztere ist, wie β -γ-Koinzidenzen und γ-Energien zeigen, komplex (mögliche Zerlegung: 1,4 und 2,1 MeV).

des Zerfallsschema wird jedoch nur nach Messung der γ -Energien im Spektrographen möglich sein. Für den Fall von nur zwei Niveaus (siehe Nebenfigur) wären diese bei etwa 1,4 und 2,1 MeV anzunehmen. Alle Übergänge sind verboten: log ft = 8,0, 7,7 und 7,1 (in der Reihenfolge abnehmender Grenzenergie).

Die Masse von K^{42} kann nicht angegeben werden, da diejenige von Ca^{42} unbekannt ist.

Zusammenfassung.

In der Zusammenstellung der Resultate der Tabelle 1 bedeutet E_{I} die Zerfallsenergie und p_{I} den Bruchteil der Zerfälle in den Grundzustand des Folgekerns. E_{II} ist die Grenzenergie der weichern Teilspektren. Unter E_{γ} ist die Energie der γ -Strahlung gegeben, sofern diese gemessen wurde. Eingeklammerte Werte sind unsicher.

Kern	$E_{\mathbf{I}}(\mathrm{MeV})$	$p_{\mathbf{I}}(\%)$	log ft	$E_{II}({ m MeV})$	$p_{\mathbf{II}}(\%)$	log /t	E_{γ}
0 ¹⁹ Na ²⁵	$\begin{array}{c} {\bf 4,5} \pm 0,3 \\ {\bf 3,7} \pm 0,3 \end{array}$	30 ± 10 (55)	5,5 (5,2)	$2,9 \pm 0,3$ (2,7)		4,2 (4,7)	N
Mg ²⁷	$2,8_0 \pm 0,2$	$<\!2$	>7,1	1,7 ₈	~ 75 ~ 25	4,8 4.7	1,02 0.64 ± 0.84^{7}
Al ²⁸ K ⁴²	$\begin{array}{c} 4,\!5_5 \pm 0,\!2 \\ 3,\!5_0 \!\pm 0,\!12 \end{array}$	${<}2 \\ {70}{\pm}10$	>7,5 8,0	$\begin{array}{c} 2,7_{5} \pm 0,1 \\ (2,1) \\ (1,4) \end{array}$	100 (17) (13)	4,8 (7,7) (7,1)	$1,8_0 \pm 0,1$ (1,4) (2,1)

Та	bel	le	1.

Tabelle 2 enthält die neu berechneten Massenwerte, soweit sie von den Angaben des Isotopenberichtes 1942⁴) abweichen.

Tabelle 2.

O ¹⁹ Na ²⁵ Mg ²⁶ Mg ²⁷	$\begin{array}{c} 19,0093.7\pm3.5\\ 24,9977.1\pm3.7\\ 25,9906.0\pm2.4\\ 26,9928.1\pm2.3\end{array}$	Al ²⁸ Si ²⁷ Si ²⁸	$27,9904.9 \pm 1.1$ $26,9948.0 \pm 1.8$ $27,9856.0 \pm 2.4$
Mg ²	$26,9928.1 \pm 2.3$		

Unserm verehrten Lehrer, Hrn. Prof. Dr. P. SCHERRER, danken wir für die Ermöglichung und Förderung dieser Arbeit. Dem Jubiläumsfonds der ETH. sind wir für finanzielle Unterstützung der Untersuchungen zu Dank verpflichtet. Hrn. Dr. E. Jakobi danken wir für wertvolle Mitarbeit bei der Ausarbeitung und Durchführung der chemischen Trennungen.

Zürich, Physikalisches Institut der ETH.

Literaturverzeichnis.

- ¹) BLEULER und ZÜNTI, H.P.A. 19, 137 (1946).
- ²) BLEULER und ZÜNTI, H.P.A. 19, 375 (1946).
- ³) MATTAUCH und Flügge, Kernphys. Tabellen (1942).
- 4) Flügge und MATTAUCH, Phys. Z. 44, 181 (1943).
- ⁵) EKLUND und HOLE, Ark. Mat. Astr. Fys. 29 A, Nr. 26 (1943).

- ⁶) HUBER, LIENHARD und WÄFFLER, H.P.A. 17, 195 (1944).
- ⁷) ITOH, Proc. phys. math. Soc. Japan 23, 605 (1941).
- 8) ALICHANOW, ALICHANIAN und DžELEPOW, Nature 136, 257 (1935).
- ⁹) KONOPINSKI, Rev. mod. Phys. 15, 209 (1943).
- ¹⁰) ITOH, Proc. phys. math. Soc. Japan 22, 531 (1940).
- ¹¹) ALLEN und CLAVIER, Nature 158, 832 (1946).
- ¹²) BARKAS, Phys. Rev. 55, 691 (1939).
- ¹³) WEFELMEIER, Z. f. Physik 107, 332 (1937).
- ¹⁴) HUBER, LIENHARD, SCHERRER und WÄFFLER, H.A.P. 18, 221 (1945).
- ¹⁵) SEREN, MOYER und STURM, Phys. Rev. 70, 561 (1946).
- ¹⁶) NAHMIAS und WALEN, C. R. Paris 203, 71 (1936).
- ¹⁷) HUBER, LIENHARD, SCHERRER und WÄFFLER, H.P.A. 17, 139 (1944).
- ¹⁸) SEABORG, Rev. mod. Phys. 16, 1 (1944).
- ¹⁹) RICHARDSON, Phys. Rev. 53, 124 (1938).
- ²⁰) KURIE, RICHARDSON und PAXTON, Phys. Rev. 49, 368 (1936).