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Electromagnetic Properties of the Nucléon
and Relativistic Electron-Proton Scattering According

to Meson Theory
by Lalit Kumar Pandit

Seminar für theoretische Physik der Universität Zürich

(14. II. 1958)

Summary. The relativistic cut-off prescription of Arnous and Heitler is used
here to calculate the anomalous magnetic moments of the nucléons and the elastic
scattering of high energy electrons by protons on the basis of charge-symmetrical
pseudoscalar meson theory, using both pseudoscalar and pseudovector couplings.
The calculations are carried to the first order in perturbation theory. Good agreement

is found with the experimental results of Hofstädter et al. on the electron
proton scattering. Further the non-relativistic limit of the anomalous moments has
been studied and a discrepancy in the results of the usual non-relativistic meson
theory models has been pointed out and treated.

Introduction

It has been felt for a long time now that the present day field theories
stand in need of a fundamental change in their structure. For instance,
meson theory, inspite of the large amount of work done on it, has had
little more than qualitative success. Recently, however, a hope has arisen
that the theory can still be used in its present form with moderate success

within a certain region of its validity. The limit of validity of the
theory is usually expressed in the form of a 'cut-off. Such a cut-off
prescription was proposed some time ago by Arnous and Heitler1).
This prescription has the advantage that the cut-off is applied in a

relativistically invariant way to the three-dimensional momenta of the
virtual particles. In the non-relativistic limit this cut-off is equivalent
to an extended source. It is, naturally, interesting to study the effect of
I his cut-off on the various meson-theoretical phenomena. With this in
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view, we deal in the present work with some of the electromagnetic
properties of the nucléons according to meson theory. Our chief purpose
has been to calculate the scattering of high energy electrons by protons,
interest in which has grown since its measurement at Stanford by
Hofstadter, McAllister and Chambers2). The measurements have
been performed with electron energies ranging up to 550 Mev. These

experimenters were able to find nice fits for their data on the basis of
phenomenological models describing the proton as having an extended
charge and magnetic moment distribution. Since meson theory also leads

to some sort of an extended structure for the nucléons, it is worth while
studying this scattering on the basis of meson theory. The high energies
involved require the theory to be relativistic, which is the case in the

present work. Alongside this, the old problem of the anomalous magnetic
moments of the nucléons has also been studied. The calculations have

been carried to the lowest order in covariant perturbation theory using
both pseudoscalar and pseudovector couplings of the mesons to the
nucléons.

Without any cut-off, the electron proton scattering was studied meson-
theoretically first by Rosenbluth3), but his results have never been

compared with experiments. The anomalous magnetic moments were
calculated similarly by many authors4). A non-relativistic calculation of
the charge and magnetic moment distribution and electron proton
scattering on the basis of the static model-recently used by Chew5)-has
also been performed by Salzman6).

In the first section of this paper, we describe briefly the general
formalism used. In the second section, we deal with the nucléon in the

presence of an external electromagnetic field with a view to obtaining
the anomalous magnetic moments. This external electromagnetic field is
then replaced in the third section by the electron and its field leading to
the electron-proton scattering. In the fourth section we study the non-
relativistic limit of our theory for the anomalous moments, as it brings
out a very interesting feature of the cut-off procedure used here. It is

found that this non-relativistic limit is different from the result obtained
from the static model since the latter is unable to take account of the
deformation of the source for a moving nucléon-an effect which has,

even in the limit of the nucléon at rest, a nonvanishing result. This is
because (as shown in section IV) the ambiguous terms to be removed
can be identified only when the nucléon moves.

Our calculations show that meson theory, with the cut-off used, leads

to very good agreement with the electron-proton scattering experiments
at all energies.
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Section I

1. Notations

The neutron and proton are described by the Dirac spinors y>N, ipP.
As usual, these are considered as the two charge states of a single
particle, the nucléon, described by the eight-component spinor ip. The
' charge-operators ' acting on these charge states are defined as :

01\ /o-A /1 0\ 1 t 1
Ti U OJ ' T2 [i0)' t3 [o-l)> T -2 (FAir2y,T=-(Tx-ix2i

with the properties,

tfN fP; xipp= 0; Tf tpP y>N; r fN 0.

We also define:

rp j(l + 73) ; rx - (1 - ts) ;

so that
Xpipp fp ; tvfN fN ; Xp fx xNfp 0.

M denotes the mass of the nucléon.

Throughout we shall use the units for which c % 1.

The four-dimensional time-space coordinates are :

x° t ; x1 x ; x2 y; x3 z

and such a four-vector is written in the text

X (x°, x)

and in the diagrams with an underlined letter, x= (x°,x).
The metric gßv has the components

cToo=l; gu=-l(i= 1,2,3); g,, 0 (p * v).

ß, a* are the usual Dirac-operators and we also write

y° ß ; y* ßcA (k 1, 2, 3) ;

y5 y°y1y2y3; y> y)^y0;

we have then
y"y" Ay'y1' 2 g"" I.

The product of two four-vectors is written, for example, as follows:

3 3

(Y;A)=jr yM„ X yMA" y°A° -y-A.
t> 0 u 0
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The 7r-mesons are described by a pseudoscalar field. The neutral
mesons are described by a real field cp3 and the charged mesons by a complex
field cp with the real and imaginary parts essentially cpx and tp2:

9 tt| (n +{V2) ; 9?T

Yf ^1 ~i ?*>•

The mass of the meson is denoted by pi.

An external electromagnetic field will be described by the four-
potential A11.

The electron spinors and operators will be distinguished by an index
' e'.

2. Interaction Hamiltonian
Let us put

B (y yh x xp) ; LA (y yh rf f) ; B™ (y> y5 x3 y>) ;

B^Hwy^Y^v); b^Hvy&y^v); B^=HfYsYt,r3V>)-

We have then, in the 'Interaction-representation', the state vector 0
(t), of the system of the nucléons and mesons in an electromagnetic field,
described by the equation

d0(i)
dt

where

HY0(t),

H1 f$>l(x)d3x;

S, (X) GS<3> (X) <p3 (X) A V2 GB (x) cp (x) A V2GB1 {x) ^ (x)

+ ~B?(x)d^+VïJjrBl'-'d'pUx)|x) »,r

+ «rjWApvM^U) -
- «¦ { 4„ (X) 4" (X) - [W„4* (X) }2 } çpt (jc) ç, (X) +

+ » 1/2 e-^- { B„ (x) 4" (x) cp (x) - fit (x) 4" (x) yt (x) _

-[tf„B*(x)j [NvA"(x)]cp(x) +

A [NMB"1 (X) ] [N,A* (x) ] <p\x) J. (I - 1)
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Np is the unit normal to the space-like surface at X. Here we may drop
the 'normal-dependent' terms and use Mathews' rules for the calculation

of the S-matrix*). G is the pseudoscalar coupling constant and F
the pseudovector coupling constant. We may put either of them equal
to zero, depending on the coupling we wish to use. The theory used is

throughout charge-symmetrical, e is the charge of the proton.
The commutation rules are, as usual:

where

and

where

(x), 993 (x') 1 [cp (x), <pt(x') ] iA(x- x')

AW A?W j ^kèik'xò(k2-pi2)s(k),

>^—h
[Va (*)> Vß (*')]+ - *' S«ß & ~ X')

S(x-x') - (»>„-^- - + M)A (x-x'; M)

A (x; M) being the same A -function as above excepting that pi is replaced
byM.

In case we use a quantised electromagnetic field we shall also have the
commutation relation

[Alt(x),Av(x')] -igfiVD(x-x')
where D(x - x') is equal to A (X - x') with pi 0.

It is defined by
3. S-matrix

0{oo) S0{- 00)

OO

5 1 + 27 S„ ;

ni di xx d* x2 j d* xn

P{§>i(Xi) S:(x2).... §:(xj).

P denotes the chronological operator of Dyson.

See P. T. Mathews : Phys. Rev. 76, 684L (1949) ; Phys. Rev. 76, 1419L (1949)
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We have appended the above notations and definitions for the sake
of clarity and completeness. We shall assume hence-forth the methods
of writing the matrix elements for the various processes, as they are all

very widely known and discussed.

4. Fhe cut-off procedure

We shall apply the cut-off to the three-dimensional momenta of the
virtual mesons absorbed and emitted by a nucléon. This cut-off is
invariant in the sense that it is equivalent to applying it to the invariant
variable of integration z given by

z' {iJm2A(P-Tì)2 +]Am2 + X2 f-p2, (1-2)

where p is the momentum of the nucléon and k that of the meson.
Integrals, which by their physical nature are invariant, can be expressed
as integrals over z only instead of the variable k. When the nucléon is

at rest, this cut-off in z is equivalent to cutting off k symmetrically to
a radius K0. If ^> is not equal to zero then the above sphere of integration
for k is transformed by a Lorentz-deformation, which is expressed by the
invariance of z.

Of course, it should be noted that the cut-off is not here meant for
(nor is it capable of) suppressing any ambiguities due to divergences of
the field theory. These must always be first removed by the usual
physical considerations of covariance, renormalization, etc. and then the
resulting integrals are to be cut-off, whether finite or infinite.

Section II
The nucléon in an external electromagnetic field

To obtain the anomalous magnetic moments of the neutron and proton
we consider their scattering by a slowly varying external electromagnetic*

field described by the four-potential:

Av(x) a'(q)èq'X d*q
with

4^-=0; i.e,q-a(q)-0.
(II - 1)

For simplicity, we consider briefly the case of the neutron as it will
bring out all the essential features necessary for our further discussions.

(For more details about this see Fried (ref. [4].) We limit ourselves to
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the lowest order S-matrix elements, proportional to e F2. The pseudo-
vector coupling is used and we shall indicate below how the pseudo-
scalar coupling is studied alongside.

Below are shown the various Feynman-diagrams which contribute to
our process :

;q

7=: (1) MP
N(p.) N(pJ

+A

l\l(p,) N(p2)

k /— L. Anr ir

(2) M<2>

(3) M<"
N(pî) INKpä

(4) Mf>
N(pi) i N(pz)

N(pl) /
---^/-lT-0-<?>-W (5) Mf

N(Pi) ^"p 9

Here px is the initial neutron momentum and p2 the final. Let ux and w2

represent the corresponding Dirac spinors. Writing

eÇp) ip2 A M2

9 P2 - Pi -

and

/F\2 11/ M2A e{—\
/*/ (2w)3 \ E(px)E
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the matrix elements corresponding to the above five diagrams are
respectively :

i/(D_ _9a fj4i, u2(ya(q)){y(-Pl + k) + M}(yk) ux m ~M2 - -/IjaK - -{piZTk)2-M2Hk2~u2:
-~~ ' (U l)

M<?> - 2A fd*k *• {y-k) Ipzgl^^L ¦A ML«? (II _ 3)
J [\Pi-k)2-M«J [fca-/i2]

(II - 4)

If(2) _ 9 A I'mh »Ayk){y(-p2+k) + M}(g (q)-y) {y.(-Pl + k) + M}(yk)ux
3 " -^]aR - i(f,2-ky_M*\[(Pl-k)2-M2Ak2-!i2i

(II - 5)

az3 - n j a p{u2ys(Y 1) Mi) [p2_M2][(p + qy2_M2][q2_^] ¦ I11 D)

The spur occurring in Mf1 is equal to zero. Thus we have

In the above integrals, the k0 variable is to be integrated first with the

prescription that M and pi in the denominators carry a small negative
imaginary part which goes to zero after the integration.

Using the properties of Dirac equation and some simplifications, we

may combine these matrix elements thus :

M _ Mm _ y A (2 M)2 /+4 (uiyku1){a(q)-(2k + q)}M, M3 -2 A (2 M) jd k-: —^—2] —^ _+-^¥_4_-r

+2/i />* s(y^+2yrf^,(2i+^(9), (n - 7)

Mn= Mf> + MW + M<,2)

ü2(yk) (y a (q)) (y k) ux2/1 (2M)2/ d*k
[(p2-k)2-M2][(px-k)*-M*i[.k2-p2}

-ZAjvh^W*. (II-8)
In these we shall put

q ¦ a (q) 0.

The first terms in Ml and Mu are exactly what one gets for the pseudo-
scalar coupling if one puts (2 MF j pi) G. The second terms are the
extra effect due to the pseudovector coupling. Mx is then the so-called
meson-current contribution and Mu the nucleon-current contribution to
the scattering, as is clear from the diagrams (3) and (4).
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Further evaluations and simplifications are done as usual. An example
is given below.

Thus in the first term of Mu we are interested in an integral of the
form

="5 I jib k»kv
° ./ [k2-2px-k+Ax][k2-2p2-k + A1][k2 + A2]'

where we use

pl - M* 0 pl - M2,
and so have

Ax 0, A2= - pi2.

To combine the denominators we use the Feynman formulae :

i
—— / dx -r - — -—ab J jix + b (1 — x)\L

0

1 1

—. - dx 2 y ¦ dy - ;— ; --=-.abc J J [axy + by (1- x) + c(\- y)]z
0 »

Putting :

a k2-2px -kAAx, b k2-2p2-kAAx, c k2 A A2
and

Px Pl X + p2 (1 - X)

we have

^J^kjdxhydy _k;:Xy+àAl_y)ìì.
o o

To make the denominator an even function of the integration variable k
we put

k-pxy k'.

Note that to obtain the magnetic moments we go in the end to the case
where the nucléon is at rest, i.e. px p2= 0. Thus the above
transformation will not change the cut-off limits. But in the case of an actual
nucléon scattering (as is the case in section III) we may have px 0 but
/>2 is not equal to zero. Then the cut-off limits are to be transformed

suitably, or, as is done by us, we go back to the original k from k' before
applying the cut-off. Our integral is now:

i i
"X f d*k' f dx f 2ydy kf'h"'+ {Axy)ii(Pxy)v+ V (Pxy)-+ K'(Pxy)ß

(k'2 + A)3
o o

where
A -p/y2 + Axy + A2(l-y)
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A great simplification is now achieved by using (according to Feynman)
the equations :

fd*k' ¦ (an odd number of factors k) f (k'2) 0, (II - 9)

fd'k' £>; / (fe'2) /W | (k'2gßv) f (k'2).

This last equation could also be written, for two four-vectors Aß, Bß,
thus:

'd*k'{k'-A) (k'-B)f(k'2) (A-B)fd*k'(\k'2\ /(fe'2). (11-10)

The justification of this equation (which is important for us exactly for
our divergent and ambiguous integrals) is obvious when the limits of
integration are infinite. That it is justified also for our invariant cut-off
follows in this manner. Since the above integral is to be relativistically
invariant and since after the integrations we at most introduce only an
invariant cut-off constant, the only form it can have is

Inv. constant x (A • B).

And this form clearly requires that

/W kr\2f(k'2) - fd^k' k'2 f (k'2) - fd4k' k22f(k'2)

d^k' k'32f(k'2)=-- fd*k' k'2f(k'2)
J

It is true that when the integral is diverging, the above form does not
necessarily follow from every explicit calculation (as is usually the case,

of the well-known ambiguous integrals of field theory) ; but then
invariance and therefore the above from has to be demanded as an
additional postulate. Thus our integral reduces to

3 fd*k'fdx[2ydy ^^+}PMP,y)r.
0 0

Using the Dirac equation and the properties of y-matrices we obtain
the matrix elements in the following form (we write M{1\ Mf) for the
first and second terms of MT respectively) :

MV 2A(2M)2ü2{iMB2[(Y-a),(Y-q)]A2M2B2(ya)AK2(ya)}ux,
M<ì> 2A(2M)2u2{M(A + Bx) [(ya), (yq)] + Aq2 (ya) A

A (2 M2A + 2 M2BX - Kx) (y-a)} ux,

Mf) 2A (2M)2u2[J^- (y a)} ux,

M^=-2A(2M)2ü2{-^Ki(ya)jux. (11-11)
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We have put above simply a for a (q), and made the following
substitutions:

i i
A =2 i'd*k' [dx fdy^{1~x]

(k'2 + A)z '
o u

Bx=2j d^k'jdxjdy^-^,

h'i I dx j d v • v j d*k' (k,t+Ay, >

B2=2 d*k" dx dy - i{k"2+D)'<

i i
K0 dxJdy-yjdiv'wkw

(11-12)

0 0

1

K<-J ***£?••
A - pi2 (1 - y) - M2y2 + y2x (1 - x) q2

D=- M2x2y2 - pi2 (1 - xy) + y (1 - y) (1 - x) q2

è - pi2 A q2 x (1 - x) ;

fe' fe - {px x + p2 (1 - x)} y

k" k-{pxx-q(l-x)}y
fe"' fe+ qx

The total matrix element is thus given by

Ms= MrA MU=2A (2M)2 ¦

¦ », {P[(Y ¦ «)- (7 • 9)J + Q (7 • a) + R q2 (7 • a)} % - (H - 15)

where we have

P. M (A + Bx +1 B2)

!D V I IS J _'2T8M! 3 4M2 4

(II - 13)

(11-14)

Q 2 M2A +2 M2Bx+2 M2B2 - Kx+ K2 + --] _ Ka - --L. X,
i? ^

(II - 16)
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P, Q, R are all integrals involving q2 as a parameter. To determine the
magnetic moment we are interested in fields which vary slowly so that
we may take q2 as very small and expand in powers of q2 and retain
terms at most linear in q.

Thus writing, e.g.,
A (0) [A (q2)]q._ 0

we have
MS 2/L(2M)2 u2{Q(0)(ya)AP(0)l(ya),(yq)]A---}ux.

Using

a"(l)= {2-TAlA"^e"''Xdix(27

(yuf-yvy"),

__
ÒAk ÒA»

we have

Ms 2A(2M)2^¥fd^xe'P'

i{Q (o)y^"+P(0)v gr—} «hì*>'-*. (11-17)

Ambiguities

We note first that P(0) is a convergent expression. Care must however
be taken in the treatment of Q(0). In Q(0), there occur differences of
Kx (0), i?2 (0), X3 (0) and Ki (0) which are all divergent integrals. Hence

Q(0) has an ambiguous value and we may obtain any value we like for
it by suitably choosing the method of integration and transformation of
variables. The only way of resolving the ambiguity lies in taking
recourse to some physical arguments. We have one available in the form
of the charge conservation of the nucléon. Since the neutron has to have
a charge equal to zero (and the proton equal to e) we must demand that
Q(0), which as the coefficient of the y A^-term represents a charge of
the neutron, has the value zero. In other words, we simply have to
subtract out the y „A ''-terms independent of q. Using this prescription
we get

Ms= 2 A (2M)21^fd*xe^-xu2[P(0)+aIÀVTf'A---]ux ?>¦-.

The next higher term (proportional to q2) which represents a contribution

to the ' neutron-electron interaction ' still diverges for pseudovector
coupling but is convergent for pseudoscalar coupling. This divergence in
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the case of pseudovector coupling is now to be handled with our cut-off
and considered as an observable effect. The higher terms would be
needed only for an actual scattering but not for the magnetic moment.

If we now specialise to the case where the external field is a static

magnetic field H, then

f(0iv5'"" >P(0)o'.H.

Going over to the two-component Pauli-equation we are able then to
interpret it as a magnetic moment effect. Thus the anomalous magnetic
moment of the neutron is

i e I 2 MF \2

Since P(0) is the same for the two couplings, we get the same value
for piN, provided we assume the equivalence of G and (2 MF/pi). We shall
often put for shortness

r 2 MF
Cr

[I

fe=--^^P(0).

It is to be noticed that the neutron has been ' brought to rest ' after
splitting the a^v gf* term. Thus the cut-off to be applied to the integrals
in P(0) is simply the spherical cut-off to the radius K0.

By an exactly similar treatment we get for the anomalous magnetic
moment of the proton the value

where

PP(0) \ M [A (0) + Bx(0) - B2 (0)]. (II - 18)

We may put our results (in units of ej2 M) now in the following form :

_ _
G2

My— 4jj2 Xn ¦

G2

I^P^ An2 %p '

AN /meson ' Anucleon '
where

XP /vmeson 9 ^nucleoli '

(II - 19)
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(imeson) is the contribution from the meson current and (%nucieon) that
due to the nucléon current. After the necessary integrations we have:

1 * e ,,,-,,„,
meson 2 ji2 """"" """" "z^!

^o+_r.2„+L_A,.2/j
m ß2 r 4 2 n

rj2 Tj2

2" A'
X '

'

2 + Yrf] X

+ Iw(v2 + ß2-wv4

_U L.2 1 r,i\ v

y + m2 y ' ^ m2

1

_
*

X

|/ + AT« |/ ' + If 2

¦ y> 2 VI"

x log \ M2 M |/ ' M2 ^ M

V ' ^ M2 M V ^ M2^ M

L. [2 r,2 - 4 rf- A rf] x

X COS"1 ^]/1+£l 1L2+Ä<L_ Kl.
t] y m2 y ' M2 M2 f(i-i)

and

Nucléon ^-M[^(0)+P1(0)]

r/6| x

x {

X lo

rç x.1/A..2 A'..2
1 + >?' +3f2 A7

v(»/A2
1 + 3/2

M2 M" F'
A,,2

+ — ""T
M*

|A
A„2 1+^L + Lc

M2 T AT.Ì/2 .1/

-++(3^4

X COS -1
r] y M2 y ' + M2

A,?0' n
M2 2 (II — 20)
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Here we have put
fi

rl=~M

v.~ rj*

393

K2
ß2=a_2MASL

4
* i,
UL

M2

(II - 21)

In the limit K0 00, the well-known Luttinger formulae are
obtained.

Below we give a table for our numerical results. The value of r\ used
in this table is 0 • 15.

K0 XN Xp %lfl P

M 0-53 0-13 4-1

2/3 M 0-38 0-12 3-2

1/2 M 0-278 0-104 2-67

1/4 M 0-098 0-050 1-96

For K„ 00, 08.—— ~ 8. The experimental value for -^— is about 1 •

The ratio of the magnitude of the anomalous moment of the neutron
to that of the proton drops from the value of about 8, obtained without
any cut-off, to the value of about 3 with a cut-off of 2/3 M. The large
value of (xnIxp) ls due, as is well known, to the considerable contribution
from the nucléon current. The cut-off suppresses it a good deal, thus
improving the situation, but it does not suffice to reach complete agreement.

This, of course, is impossible in a first order calculation. Phenome-
nological considerations of the type first made by Fröhlich and Heitler*)

using the concept of a probability of dissociation of a nucléon into
nucléon plus one meson show already that with the observed value of
fjifM the magnetic moments can never both be fitted accurately to the
observed values. The coupling constant (also then the probability of
dissociation) drops out in the ratio | ptNlptP |, and the value for this
ratio is in fact about 1 • 4 (for ptjM 0-15). Value of the order 1 • 4
is obtained by us, for this ratio, as the lowest value in the limit K0 -> 0.

This shows that we need also the two-meson states for exact fitting.
We may thus expect that the inclusion of higher orders would lead to

much more satisfactory results.

*) H. Fröhlich and W. Heitler, Nature 141, 37 (1938).
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Section III

Electron-proton scattering

For this problem we replace the external electromagnetic field of the
last section by a quantised electromagnetic field and besides we have to
add to the interaction Hamiltonian, (I — 1), a term equal to

-e'^y^^A^X)
describing the interaction of the quantised electron-field with the
electromagnetic field, through which it interacts with the proton.

Then the lowest order matrix element for electron-proton scattering,
proportional to e2, is represented by the following Feynman diagram:

e—» ^ »—e

(1) Mp2

qz

q £p2-Pi

Pi P2

The corresponding matrix element is

<- ~ie*ik> VimimhJEM fe^>&2y>^2

ó(4)(g2-gi+p2-PiL (in -1)

where q2, qx are the final and initial electron four-momenta and co2 and

cox the corresponding Dirac spinors. m is the electron mass, Ee (q) is the
electron energy corresponding to momentum q. The rest of the notation
is as in section II (the neutron there being of course here replaced by the
proton). Putting

„ 1 .1 M2 l/ m2 1

%=e2A2W° fe¥M,(#,M? à*(q2-qxAP*-Pi)
(III - 2)

;> (co2y^cox) (III - 3)

and

we have

Mf=-.-(2«)«w Kr\). (Ill-4)
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The next higher order matrix elements, proportional to e2F2, are
represented now by the following Feynman diagrams :

q.
e —»

<

9.2

j—•»—-e

(2) <W
p »

~*-AU^ -P
pl ?2

9.1 q2

Kc (3) Mf<2>

P—•—
n. ^VTl + X^ -P

-P

-e

(4) Mf'1'

Ü/VA
-*—•-

N

(5) Mf<2>

Besides these diagrams, we also have four more diagrams due to
nucléon mass renormalisation and self-energy of the type shown below:

9i q2 9.1

-e e—»—
Qz

IM,P

P-»-
Pi >-jf -P' Pz

g_z „-»¦ e

Pi

3i
e —»—

Pz

9z

Pl (SM) p. Pz
p-^-

Pl p2 (8M) p2



396 Lalit Kumar Pandit H.P.A.

The matrix elements for all these diagrams have the form

Mp~ const. %jvMv

where Mv is essentially the contribution due to the proton-meson part of
the diagram and % f' that due to the electron-photon part. The part of
Mv, which does not vanish for q 0, is of the form ~u2 yv ux (as will be

seen below). As explained under 'Ambiguities' in section II, this part
(which is again ambiguous) must be subtracted out to maintain the
proton charge at the value g-which value has already been taken into
account in the lowest order diagram (1). Thus to obtain the result we are
calculating we need not consider the above so-called renormalisation
diagrams as the proton-meson parts of their matrix elements are
independent of q and so will not contribute after this subtraction.

We give now the matrix elements corresponding to the diagrams (2)

to (5). They are, respectively

Mpw

MPW -

M£<1

Mp <2>

©" xr rdik «2Yv{V(-Pi + k) + M}(y -k)ux
UPl-k)2-M2f[k2-^

FA

¦®
XV d*k

-ft2-]

»2(yk){y(-p2+k) + M}yvux
[(p2-k)2-M2ì[k2-fi2ì

xr d*k

Aîf't
Ayk){y(-Pl+k) + M}yAy(- Pl + k) + M) (yk)ux

l(p2-k)2-M2][(px-k)2-M2]lk2-u2]
' û2{y (k + q)} {y(-px + k) + M} (y k) ux(2 kv + q„)

[(pt-k^-M^ltf-u^Kk+q)2-/*2]
(III-5)

Excepting for the factors outside the integrals and the replacement
of a (q) byj, these are exactly of the same form as the matrix elements
we have already discussed in section II. Thus the further reductions and
simplifications are easily read off here from the results of section II.
Just like there, here also we may combine these matrix elements to the
form:

MP-

<!
(tW d4k-

L(/»2

d*k

Mp=-2
li

F\2

»2(yk)y"{yk) ux

-M2] i(px-k)2-M2] [k2-n2] '

u2(y k) ux(2 k"+q")

UP -MIV

(A
[jiff »> + »;»] - (!)+v

[(^-it)2-M2][fe2-M2][(fe + 9)2

û2[(y-k) + 2M]u1{2k" + q")

k2-A
FA

21[(k+qY-ti

[k2-p2] •

(III-6)

Here again Mp, Mxl are equal to the matrix elements, one obtains
from pseudoscalar coupling provided one writes G for (2 M Fjpi). Mfn,
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M[y arise as extra terms due to pseudovector coupling. Due to these the
electron-proton scattering is different for the two couplings.

Corresponding to the equation

of section II, we have here
q.a(q) 0,

X(9'J) 0.

As already mentioned we have to subtract from the proton-meson
part of MfLIV the same with q2 0. This is the statement of our
'charge conservation' for the proton. This removes, as before, the
ambiguities. To represent this subtraction we shall use the notation

A'(q2) =A(q2) -A(q2 0). (HI - 7)

Using the same methods as used in section II for further simplifying
the matrix elements we get

2MF\2
—j %hu2{(2M2AA2M2Bx-Kx)y'- + Aq2y"-{

+ M(A+Bx)[y\(yq)]}ux,

Mpn -2 (L^)2 x jx u2 { \ MB2 [/, (y -q)]+2 M2B2y>- +

+ K2/j ux

Ml

'IV

^\2 • — rr A-,

-) xhu2{k3y}ui

/fp\9 r
IMA \3(2-^Jd'kJdx[k2_mJ_^_xW

o

+5(jTh yjKu2y"ux

(Ill-

Here the various quantities A, Bx, B2 etc. are the same as in section (II),
equ. (12), (13), (14). Subtracting out the 'ambiguities' we have, for
example,

Ml :0

The total effective matrix element is then

rP' i tl/tP' i n/fP' i -mtP' __MF= M2AMP + Mpr A MPU A M\\ -
-,-(2^1,ffi{i^+4^[^-^^7-^-^]},1). (IH-9)
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Schematically we could represent this by the following diagram (the
proton-vertex operator being the above effective operator) :

9i 9z
e »¦ r? ¦* e\t-ey"

q
eÂP [(ï-Q)yv-rv[L-2-]

¦~sn- L r JSYA ZM

Pi Pz

The values of e and uP are :

~e-eli+^(1^Ly{A<i2+2M2A'+2M2Bi-K1-

-4M2B2-2K2--XmH:)i],

l~Vp=- AFAA ¦ 4M2(^)2 (A + Bi- ^ ¦ (Ul " 10)

ë is the effective proton-charge due to the mesonic effects and e /iP
represents essentially the effective anomalous magnetic-moment
distribution. We introduce for convenience the following notation:

F-= i- 1 + -^ (^Ff [Aq2+2 M2A'+ 2 M2B\- 4 M2B2-

K,-2K,2 -
4 M2 Ks\ •

'Up _
A + B,- B.

p ^J*P .7 "i "2 (TIT — 11)
2

e/up A(0) + B1(0)-B2(0)'
V >

where piP is our theoretical anomalous magnetic moment of the proton.
Fx can be interpreted as the charge form factor and F2 as the magnetic
moment form factor. They are simply functions of q2 and naturally of
the cut-off value Ka. F2 is the same for both the couplings but Fx is

different in so far as K3 does not appear in (III — 11) for the case of

pseudoscalar coupling.
The differential cross-section for the scattering, from the matrix

element (III — 9), has been derived by Rcsenbluth3). It can be written
in terms of our Fx and F2 in the form

'(«) (0- - h r h'" 4 t I2 (Fi+^W \ A

S}]- (III-12)-ptPF\\



Vol.31, 1958 Electromagnetic Properties of the Nucléon... 399

In this formula, 0 is the angle of scattering, and E the energy of the
incident electrons, in the laboratory system, where the proton is initially
at rest (px 0). The rest-energy of the electron has been neglected here
in comparison with its kinetic energy. In terms of E and 0 we have

— 4 E2 sin2 —

1 +--TJ- sin2—-

Since px — 0 we have

M2 ~ M2 V 4 / '

where
il
M2'

It should be noted that the Rosenbluth formula, (III — 12), was also
used by Hofstädter et al.2) in their phenomenological interpretation of
their experimental data. They then took for piP the experimental value
and chose for Fx and F2 various analytical functions. Here, of course, all
these three quantities are derived from meson theory.

Evaluation of Fx, F2

To evaluate Fx and F2, equ. (Ill - 11), we simply have to evaluate the
various integrals occurring there with our cut-off. First we write Fx and
P2 in the following form

F2= Vtl t¥S^Stv > for both coings ; (HI - 14)

Fx= 1 — .tr—^{fPS} for pseudoscalar couplirg ; (III — 15)

Fi=l—T^^{fpv) • (G —' for pseudcvector coupling;

where (m ~ 16)

fp.s=12^i- 3i- 3;- 23;+ 3v+ 2 3s (Ill-17)
/pv=fp.s+14Zh- (III-18)

In these equations, 3i. ^2- • • • > 39 are the integrals to be evaluated,
defined by:
A ^ ï ~? R „ _

^ l ~? • f? __
n v ~r¦^ ~~ " oM2-Ol'Dl" o mî O2 > D2 — IMiO;2 Jif2 Ol ' ui 2 M2 ' 2M2 "^3 '

MO) -^3*; bx(0) —^ 35; b2(o) -^3«;
K[ - ttH %;K2=- nH38; K'3 - nHM2%.

(Ill-19)
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In terms of these integrals, we have also

G2
piP 8ji2 {01+ A2 ~ Asf

(«¦ 0)
(III - 20)

As an example, we indicate below the evaluation of A. From (II - 12,

13, 14) we have j
y3 x(l — x)

where

and

5
1.0

A 2 jd*k' dxfdy-
0 0

(k'2+A)3 '

k'= k-{pxxAp-(l - *) y}

A=A (e2) - M2 { y2 + ry2 (1 - y) + y2* (1 - x) e2}.

V

N>„v.J^%
""---¦»-_^^

~~-^ ses--. {^0 00

Vf
_&=('

2M)

4) M

0 1.0 1.2 1.4.2 4 .6 .8

Fig. 1

The magnetic moment from factor F% plotted as a function of s2(= - q2\M2) for the
cut-off values K. 1/2 M, 2/3 M, M, 00.

On performing the integration over k'0 (which is equivalent to k0 since
the limits are infinite) by the usual method, we get

A - -3 p. [dxfdy fd3k' g**1-*)
u 0

Now we have to remember that we are working in the laboratory
system where px 0, and hence A is to be cut-off symmetrical to K0;
but here _ _* _, _^ _»

k' k — p2y (\ — x) k — p y (1 — x)
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so we transform the above integral back to the old ~k variable thus :

cPk' d3k
- (k'2-AY12 J ~ '" [rA-2(k-'p)y(l-x) + p2y2(l--x)2-Af12 '

The integration over the angles (taking p as the axis) is easily performed
and it gives :

J (k'2-i(r?2-A}5/2

0

X) [' {ik-py(l-xY\2-A}3>2
1

{\k + py{l~x)A-A}3'2\

The integration over k is performed again very easily and we get finally

A - Ai2 M2

70

PS.PV

60

.50

40

30

Ko MjPSl

20

K„ M(PV)

Ko. Vi MIPS)

i_Ks^/iM+P\/)
"-K0= '/2 M (PS)

^K„»'/2M(P"

Ez.0 .2 /.4.6 .8

Fig. 2

fps (continuous curves), fpy (dotted curves) plotted as functions of e2 — q2jM2)
for the cut-off values K0 1/2 M, 2/3 M, M, oo. fPS, fPV determine, according to
equations (III-15, 16), the charge form factor, Fx, for the pseudoscalar and pseudo-

vector couplings respectively.
*
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where

3X= jdxjdy fx(x,y;K0,E2)

with

fx(X,y;K0,e2)=^-\
IM) i /Y~R * T2

\V[~M + M y^-^l +y2+rl2(l-y) + y2x(1.-x)e2

1/

+

^~-~A^-y(l- a]2+ y* + r/2(l-y) + y2x(i- x) e2 j

y3 x (1 — x)

[y2 + tj2 (1 — y) + y2x(l — x) e2]

-°-A-p y a-AM ^ M y y '

11/& P y(l-x)\ +y2 + ri2(l-y) + y2x(l-x) e2
M

K. -ft

y (1 - x)
Ko P

M M

V[ljjjr- ]| y(l-^)j2+y2 + ^(l-}')-r^(l-A-)£2

Now the integrations over the variables x and y remain. These are
extremely complicated and so we have performed these numerically for
some selected values for the parameter K0 M, 2/3 M, 1/2 M, oo) and
the parameter e2 0-05, 0-1, 0-3, 0-5, 0-7, 1-0, 1-5). The same has been
done for the other integrals, Bx, B2, K'x, etc.

The results of this evaluation are shown in the figures (1), (2), where

we have plotted P2, /PS, fPV as functions of the parameter e2, for different
values of K0. From these graphs we may read off the values of F2, fPS,

fpv for any value of s2 (up to 1-5) as need be.

For K0 not too large, the difference between /PS and fPV is not large.
This leads even to a smaller difference in cross-sections, since P2 is the
same for both the couplings. But when K0 -> oo, fPV -> oo.

Results - Cross-sections

Now the cross-section as a function of the laboratory angle of
scattering, for various values of the initial electron energy, is easily calculated.

The results are shown graphically in figures (3) to (6). These scattering

curves have been plotted for the different values of K0 and for differ-
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ent choices of the coupling constant. The experimental points shown
for comparison, have been taken from the Stanford dissertation of
Chambers2). We give besides also theoretical curves for E 1000 Mev,
at which energy the experiments have not yet been performed.

Discussion of the results Conclusions

The dependence of the curves on the value of K0, for fixed values of
the energy and coupling constant, is easily understood physically. Let

500

200 Mev

too

50

'ID

40 SO 80 100 120 140 e°
Lab cnglo (deg

Fig. 3

The differential cross-section for the scattering of 200 Mev electrons plotted as a
function of the angle of scattering in the laboratory system. The theoretical curves
are drawn for the cut-off value K0 M for both pseudoscalar coupling (ps) and
pseudovector coupling (pv). The curve drawn for K0 co is for pseudoscalar
coupling (ps) ; pseudovector coupling gives a divergent result for K0 oo. The
coupling constant is G2/4 n 31. The experimental points shown for comparison

are due to Chambers (cf. 2)).
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us, for the sake of visualizing the process, use the non-relativistic
terminology of the meson-cloud round the fixed heavy nucleon-core. The
charge is distributed between the point core (actually a Dirac particle)
and the cloud. Then the cut-off K0 has the effect that, as it decreases

from infinity towards the value zero, the meson-cloud extends more and

30

10

b

05

0.2

ÄAV \\\
\\\ \ v \

\\\x
\\\\

\ \\ \

\\\

E 550 Mev

4TT OI

\ \ 1 \\ \ \ V
j\\ X\V\ \ x \ S

\v Hi\\ V -V\\ vv<3- """v^

V\Ct.
\^ \NÄ\\

X

S. **.

ì\i \ x-'Vfc
^N^ X^*<>

Vfc\©
V»V«Tx

40 60 80 I00
Lab. angle (deg.)

Fig. 4

120 140 9°

The differential cross-section for the scattering of 550 Mev electrons plotted as

a function of the angle of scattering in the laboratory system. The continous
theoretical curves are drawn for the various values of the cut-off constant K0 indicated.
The coupling used is indicated on the curves (ps stands for pseudoscalar and pv for
pseudovector coupling). The coupling constant is G2/4 n 31. The lower dotted
curve indexed 'Dirac' (K0 0), is the scattering curve corresponding to the case
when the proton is considered as a point Dirac-particle without any mesonic effects.
The upper dotted curve marked, 'Dirac + fiP' represents the scattering by a point
Dirac proton along with a point anomalous magnetic moment of 1-78 nuclear
magnetons (described by a Pauli term). The experimental points shown for com¬

parison are due to Chambers (cf. 2)).



Vol. 31, 1958 Electromagnetic Properties of the Nucléon. 405

more, but the total charge on it becomes less and less till the whole of
the charge is on the proton core. Similarly, the anomalous magnetic
moment of the proton becomes more extended as K0 decreases, but its
total value vanishes for K0 0. Thus, for K0 — 0, we have the proton
simply as a point Dirac-particle. Thus, as K0 decreases the curve moves

up to be identified, ultimately, with the curve corresponding to the

proton as a Dirac particle (the dotted curve indexed-'Dirac'). This is

in contrast to the phenomenological treatment of Hofstädter et al.2),
where a larger radius (in our case smaller K0) moves the curves down;
but, there the total charge is kept fixed on the extended structure. The

curve for the case where the proton is considered as a point Dirac
particle with a point anomalous magnetic moment of 1-78 nuclear

1
30

E =550 Mev
62 ._

20

4rr

\<p

0.5

0.2
40 60 12080 100

Lab. angle (deg.)
140 9°

Fig. 5

The differential cross-section for the scattering of 550 Mev electrons plotted as a
function of the angle of scattering in the laboratory system. For the indexing and
notations see the legend to Fig. 4. The coupling constant used here is G2/4 n 16.
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magnetons (the dotted curve indexed-'Dirac + piP') lies much above
all the other curves shown.

Similarly, for a fixed value of K0 and the electron energy, the variation

of the curve with the value of the coupling constant is such that a

larger value of the coupling constant implies a more extended structure
for the proton as a whole. This is quite clear for when the coupling
constant is zero, we have no charge on the meson cloud and the anomalous

moment is zero. Both these increase as we increase the value of
the coupling constant.

The agreement with experiments is nearly perfect at all energies for
the values G2j4 n 31 and K0 3/2 M*). For pseudoscalar coupling the

^0.5

0.3

CD

b

0.1

0.05

0.03

4

w\\ \
F - inno Mou\\kV.

N

S£ =314H ol

\ \ \

\

\ \

X \^
\ \

\\X\\

\/5f-

+* \ -~.

X\
40 60 120 140 9°80 100

Lab angle (deg)

Fig. 6

The differential cross-section for the scattering of 1000 MeV electrons plotted as

a function of the angle of scattering in the laboratory system. For the indexing and
notations see the legend to Fig. 4. The coupling constant is here given by G2/4jt 31.

No experimental data is available at this energy so far.

*) The curve for the value K0 3/2 M has been drawn by interpolation.
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choice K0 oo and G2j4n about 16 also gives good agreement. Thus
there is a one-parameter choice of the combinations G, K0 which gives
nice agreement for both the couplings (this includes for pseudoscalar
coupling also the value K0 oo). The constants, for example, G2j4 n 31

and K0 3/2 M agree within a factor 2 with the values derived from
other phenomena like pion-nucleon scattering, mass difference of n° and
7i+. Exact agreement can, of course, not be expected since firstly, our
calculations are only to the lowest order in perturbation and secondly,
the cut-off theory is nothing more than a crude substitute for the future
correct theory. In any case we may conclude that meson theory
accounts very well for the electron-proton scattering.

It should be noted that from our calculations, we are not able to
decide definitely in favour of either of the two couplings used. Both give
good agreement depending on the choice of the cut-off value and the
coupling constant. But other phenomena like pion-nucleon scattering5)
show that pseudovector coupling with cut-off is to be definitely
preferred*)

Before ending this section some additional remarks about the principle

of the cut-off are required. We have applied the cut-off, in this
section, to the momentum, k, of the virtual meson emitted or absorbed
by the proton in the initial state, i. e., to the meson-nucleon interaction
at the vertex at which the initial proton enters a Feynman diagram.
Actually the cut-off must be applied to the interaction at each vertex.
Consider, as an example, the Feynman diagram number (5) of this
section. For the vertex where the initial proton enters the diagram we
have the cut-off condition:

I ]/(?i -^)2+ M2 A );k2 +»2- pl < {]/k20 + M2 + ]/KlA^2f.
This condition is the one used by us. Besides this we have, for the vertex
where the final proton leaves the diagram, a condition :

2>2(]/(?, -kf+M2+]/(k+qY+p:2f~ (px+q)< {^l^+M*+]/k(+^
These two conditions are identical only in the case where ~q 0. In the
general case (q * 0) we must, naturally, take the superposition of these
conditions into account. For this, extremely complicated computations

*) A very common error is prevalent that the y- or /)S-coupling is equivalent to
the gradient or />i<-coupling in the non-relativistic approximation. This, of course,
is not at all true for second order processes where the negative energy intermediate
states give the largest contribution for the y5-coupling, analogously to the case of
Thomson-scattering. The negative energy states cannot be omitted for the yh-
coupling. The good agreement reached by Chew15) for pion-nucleon scattering is
due to the using of the gradient (pv) coupling.
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would be required. But since the values of q in our calculations are not
too large (excepting for large angles and large energies) the one condition
used by us is a feasible approximation. Much weight can thus not be

attached to the calculated scattering curves for 1000 MEV.

Finally, there are also cut-off conditions to be imposed at the vertices
where the photon takes part in the interaction. This condition would
chiefly limit the values of q for which the present theory is valid. If for
the interactions where a photon takes part, the cut-off value is equal to
or larger than our K0 (for the meson-nucleon system), then the values of

q used here lie well within the range of validity of the theory.

Section IV

Non-relativistic limit of the anomalous moments

A very often quoted result for the anomalous magnetic moment of the
neutron (also equal but opposite in sign for the proton) according to
non-relativistic meson theory calculations is (in units of ej2 M) :

0

where co2 k2 + pi2

and G 2 MFjpi for pseudovector coupling.

Here there is no nucléon current since the nucléon is considered as a
fixed heavy extended source.

Let us compare it with the non-relativistic limit of our covariant
calculation for piN. We have, as shown in section II,

K,
_

1

mv= -2iAMP(0) - -LL- 3 f^r-Si fdy-r, £ „,.rN v ' \n2 J M M2J y {(y-a)2+b}i'2 '
0 0

where the integrations over the variables k0, x and the angles in Ä-space
have already been performed and

l A1 _
k2 n2

_ l j^a~2 M2' ~ M2+ M2 4 10*'

*) See, for example, G. Salzmann: cf. (5), Equ. (18c), where, of course, we
must put v 1 and the upper limit equal to K0 to compare it with the above
calculations.
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Now to obtain the non-relativistic limit we integrate over the variable

y and then take the lowest term in an expansion according to ljM. This
gives

k

^~Z-MJdk-ki^y (iv-2)
0

Clearly, the two results (IV -1) and (IV - 2) do not agree. The
Understanding and removal of this discrepancy is simple but
noteworthy. A similar discrepancy was also pointed out recently by Heitler7)

in another connection. The situation is clarified if we note that in
going over to the non-relativistic limit in a consistent way (by expansion
in powers of kjM etc.) a cut-off K0, smaller than M, is automatically
implied. Further, this cut-off, which is invariant in a relativistic theory,
must be consistently handled when one goes over to the non-relativistic
limit. To bring out this point clearly let us look at the form of our
matrix element of section II :

Ms ~ u2{Q (0) (y • a) + P(0) [(y ¦ a), (y q)] A ¦ ¦ ¦} ux

i.e. ~u2{Q(0) v4" + P(0) ahv %>" A ¦¦¦}ux.
Here P(0) is essentially the anomalous magnetic moment. It is easily

identified; whereas the C(0)-term is separated out and dropped for
reasons already discussed in section II. Now if we go over to the non-
relativistic Pauli two-component case in the usual manner*) we have for
the case of a static magnetic field :

y • A > px- A + - a H

*„,3r—+o,H.
Thus in a calculation which is non-relativistic from the start we shall

have the cr-ïï-terms mixed up from the two separate type of terms, one
being the real observable effect and the other an ambiguous term which
must be subtracted out, for its value must be zero, since the neutron has

a charge equal to zero. To obtain the correct result then, we must not
let px be equal to zero, so that we may recognise, with the help of the
px- A-term, the a-B-term (with half the same coefficient as the px-A-
term) which must be subtracted out, leaving the rest of the a • /î-term
as the true anomalous moment effect. But since fx is not zero, the cut-

*) See, for example, W. Heitler: Quantum Theorjr of Radiation, Third Edition,
pp. 109, 110 (1954).
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off cannot be applied symmetrically so that, for instance, the following
equations _ _ _>

d3k'[k-Ä)f{k2) =0

fd3k (k- 2) (k- B) f(k2) =y (2 ¦ B) fd3k rAf(k2)

which are always used in the usual non-relativistic calculations, do not
hold any longer. In other words, we have to take the ' deformation ' of
the source for the moving nucléon into account. This can be done for
the present case in a very simple way. Let k be the virtual meson
momentum corresponding to the nucléon with momentum px and k' that
corresponding to the case when px 0. Then we have for the invariant
z, equ. (1-2),

]/m2+ Çpx-~k)2 A i/pi2A k2 f- PA= []/m2+ k'2A ]/V+ k,2f.

Since we are interested in the non-relativistic conterpart of this equation
we compare the two sides after an expansion in powers of IjM and
retaining terms only up to IjM. Then

Px-k
Mm (IV-3)

}/k2+pi2 o/=ik'2Api2¦

Thus, all the integrals over d3k which we consider must be transformed
to those over d3k' and then only a symmetrical spherical cut-off to the
radius K0 must be applied.

When this procedure is used consistently the above mentioned
discrepancy gets removed and the correct non-relativistic result (IV — 2)

and not (VI - 1) is obtained.
We illustrate this by an example. Consider the first terms M(1), iWj"

of equations (II — 7), (II — 8) which correspond to the simpler pseudo-
scalar coupling. Instead of doing the rest of the calculations convariantly,
we consider the case of a static magnetic field,

^0=0, A (x) fa(q)eq'xd3q a (q) ¦ q 0

integrate out over k0, expand in powers of IjM, and retain the lowest
terms till the one which first contains a. For the sum we have then

M('v-fi-)^ - 4 n i A (2 M)2 Ò (q0) f ^
4 Meo4

Ì{- co + ~ 5 • [qx k) A ¦¦ ¦ j i-xj {k-a (q))

where v2, vx are the Pauli spinors and where we have also dropped all
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the other terms which do not enter the effect we are calculating. Here
we have now

fd3k ,-?.-> i - r- t-i fd3k' 1 ,„ i - r^ -?.

y T+ (/e' a) 3Tff ' L<?x*!^y ^T*V • L2X«] -

the correction due to (IV — 3) being neglected as it will be of an order
higher in IjM. Now integrating over angles round the axis px:

f™ k-.2(-œ) - fd3k^*) -2n-^fdcos 6 /
'
k2d k k-^9

-i
\7i^-a-jdcos djk'dk' x\ 1 +

px cos 8 /to' k'
M \k' co

x k'2 \l + 2% ¦ ^Z'1} "4 [l - 3 k'P-^e
L k' M \ co'-A co' M

using the transformation of the variable (IV — 3). Finally

cos 8,

K,

^%.à(- co) - 4n(A^- 1^' --/-^ <<ä'
co" v ' M J co

0

i£' ^ -/fe 24- //2I •

„
cu'4 I 3

Ä +,M I

ii
Thus we have

M<"-E-> ~ - (4?r)2 f /I Md (<?,) /"<**'• ^4 4 {- %^ (1 *'2 + V2) A
°

2 i - ~ - 1

Subtracting ^ • «-term and along with it the corresponding 3-term we
are left with

M%fdL ^-(4n)2iAMÒ (q0) v\\"^ £'2 (| *'2 + ^2 + | £'2} -^
o

5 • [çxa] »! - (4n)2i AMÒ (q0) v\Jdk'- k'2 ^j~ a ¦ [~qxa] vx.

o

Remembering that the Fourier transform of ia-\qx. a] is our a ¦ S,
we have, as seen easily, the anomalous magnetic moment (dropping the
accent on k' now) „

r»=-<&irjdk'*&)-
0

It should be noted that if we do not treat the px ¦ «-term and the cor-

*) Since the region of integration is not symmetrical, this integral is not zero,
as it is usually taken to be.



412 Lalit Kumar Pandit H.P.A.

responding cr-term as done above and let either px be zero right at the
start or perform the faulty symmetrical ^-integration then we get the

wrong often-quoted result (IV — 1).
In this sense we may say that the usual non-relativistic models of

meson theory are not really non-relativistic limits of a relativistic theory.
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