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On the Foundations of Equilibrium Statistical Mechanics

by M. R. Schafroth*)
School of Physics**) The University of Sydney, Sydney (Australia)

(10. V. 1959)

Zusammenfassung. Es wird betont, dass die Gesamtheiten der Quantenstatistik
mit Hilfe idealisierter Experimente auf Operationale und daher objektive Weise
erzeugt werden können. Das Wärmegleichgewicht kann dann, wie in der
Thermodynamik, als der Zustand definiert werden, aus dem keine Änderung mehr möglich
ist. Der Ergodensatz gehört nach dieser Auffassung nicht in die statistische
Mechanik der Gleichgewichtszustände; er erscheint als grundlegender Satz der
statistischen Mechanik der Nicht-Gleichgewichtszustände.

1. Introduction

The question of the foundations of equilibrium statistical mechanics
has recently been much discussed1_3). The question is as old as the sub-

ject itself, and the two founders of the subject, Boltzmann and Gibbs,
are generally held responsible for the two viewpoints which have been
taken :

(1) The approach named after Boltzmann is, briefly, the following:
From the empirical fact that aU macrosystems, when left alone, tend
towards an equilibrium state, one defines the "thermal equilibrium"
value of physical quantities as their time-average over long times ("long"
hereby meaning "long compared to the relevant relaxation times").

Since such time-averages cannot, in practice, be worked out, one then
relies on the validity of the ergodic theorem for the practical applications.

This theorem states, in qualitative terms :

"Ergodic theorem". The time-average over sufficiently long times of

quantity of interest for a physical system is equal to the average of the
same quantity over the microcanonical ensemble.

It is well-known that this theorem has not been proved, and recent
discussions1) indicate that it cannot validly be proved. It appears from

*) M. R. Schafroth ist im Mai 1959 einem tragischen Unfall zum Opfer
gefallen. Mit schmerzlichen Gefühlen drucken wir diese letzte Arbeit ab. M. F.
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these discussions that such a proof could only be based on the introduction

of "random" observers, or of "random" perturbations of the system.
It is then very obscure on what concept of probabilities this "randomness"

is based.

(2) The approach ascribed to Gibbs is more radical : One defines thermal
equilibrium by a suitable statistical ensemble, so that all quantities in
equilibrium appear as averages taken over this ensemble. For the basic
case of closed systems at a given energy, the appropriate ensemble is the
microcanonical one, so that the practical results are the same as with the
Boltzmann approach.

Here, then, a "randomness" concept is applied directly to the system
under study: Thermal equilibrium is defined by "random" systems on
the energy shell. ^

*

In both approaches, therefore, the difficulty appears to be the definition

of "randomness", which seems to require the introduction of a-
priori probabilities. Now a-priori probabilities are usually considered

meaningless, or, at best, as a subjective concept with no place in science.

(This view has been challenged recently by Jaynes2) who holds that a
satisfactory foundation of statistical mechanics may be constructed, on
the Gibbsian viewpoint, by the use of information theory, defining a-

priori probabilities according to the knowledge of the observer).
The present paper is an attempt at showing instead that a-priori

probabilities may be avoided entirely on the Gibbs view-point, so that the
latter may be taken as an objective foundation for equilibrium statistical
mechanics. This is based on the idea4) that there is one theory in which
probabilities are objectively determined by laws of nature and not simply
used, in a subjective sense, to cover up the ignorance of some observer:
this is quantum theory. Quantum theory permits, as a thought experiment,

the construction of an apparatus which produces, reproducibly,
a given ensemble. Thus, ensembles are as well-defined as pure states, and,
therefore, it becomes possible to define uniquely the equilibrium
ensemble as the one which cannot be changed any more by operations
which leave the rest of the world unchanged : the analogue of the thermo-
dynamical definition of equilibrium. The equilibrium ensemble may also,
in principle, be produced, in a reproducible way, by experimental
manipulations and is thus objectively defined.

From this view-point, the Boltzmann approach is really concerned
with a non-equilibrium problem, namely the approach to thermal
equilibrium. It is not surprising that it leads to great difficulties, since non-
equilibrium statistical mechanics has not, as yet, been properly formulated.
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2. Probabilities in Physics

Probabilities have been used in theoretical physics in two essentially
distinct ways :

(A) As a means of taking into account a lack of knowledge about some
basically determined process. In this way, probabilities were first
introduced in the kinetic theory of gases ("Unordnungsannahmen").

(B) As well-defined predictions which theory makes for given,
experimental conditions. Such objective probabilities occur in quantum mechanics

where the result of a well-defined experimental set up is predicted in
terms of them.

The use of probabilities in the sense A ("Unordnungsannahmen") is
not very satisfactory as a logical foundation of statistical mechanics,
since the concept of probability or randomness in this sense depends on
the observer. What appears random to one observer may exhibit regularities

to another, differently equipped observer. To use an average (or
"random") observer in order to avoid this, only shifts the problem, since

now the randomness of observes cannot be defined objectively. Jaynes2)
has argued that by introducing concepts of information theory, such

subjective probabilities may be used as a satisfactory basis for statistical
mechanics. Most authors, however, feel that a foundation of statistical
mechanics which lacks the subjective element would be preferable.

The "operational" way (B), in which probabilities occur in quantum
mechanics is entirely objective. The typical prediction of quantum
mechanics is of the type :

"If a preparatory measurement M-, (of a complete set of commuting
observables S) is performed on the system E, then S is in the pure state
| f > in which E is diagonal and has the measured values f :

E | f > - f | f > (1)

The outcome of any other measurement M2 of a quantity Z on S is
then governed by the probability distribution

cpß) | < C | f > |2 (2)

over the eigenvectors | £ > of Z."
This means that, if the preparatory measurement, M-,, is performed

on a large number N of identical systems Z and a selection made of the
systems which yield the values f, (1), then the results of M2 will be
distributed according to (2) (with an accuracy which increases in a
predictable fashion with N). This is a prediction as objective as one may
have; the non-deterministic nature of quantum mechanics shows itself
merely in the fact that accurate predictions can only be made for large
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numbers of identical replicas of the system. The observer does not enter
the picture, except for his classical function in choosing the experiments
(M1 and M2) he wishes to perform.

For the transition to statistical mechanics, the consideration of pure
states is not sufficient, one has to introduce "mixtures", i.e. incoherent
superpositions of pure states. One might now feel that mixtures in quantum

mechanics serve precisely the purpose A, of taking into account an
incomplete knowledge of an intrinsically better-determined system (which
"is really in one of the pure states"), and that, therefore, one is back at
the difficulties of A.

However, notwithstanding any philosophical interpretations, mixtures,
like pure states, may be defined in a purely objective manner, independent

of the observer, by prescribing an idealized experiment, analogous to
M-, above, for constructing them.

Assume, for illustrative purpose, that we wish to construct, for the
system 27, a mixture P given by its weights ps attached to the (complete
and orthonormal) set of states | f >. First, by the classical procedure for
pure states, one may by a measurement M' select the pure state

\P> Z]/h\è> (3)

By a second measurement M'[, performed on [ p >, of the complete
set of observables E, of which deliberately no record is taken, the system 27

is left in the mixture P; i.e. the subsequent measurement M2 of the

arbitrary quantity Z now yields the distribution

<Pp(C) ZPs\<C\S> I2- (4)
t

The statement, therefore, is: If the combined measurement (M[ + M")
is performed on a sytem 27, the latter is left in the mixture P. If (M't + M"x
is performed on a large number N of identical systems 27, there results
the ensemble defined by the density operator

U Z I f > Pi < è I ¦ (5)

It is important to note that no corresponding operational procedure
exists for creating an ensemble with given probability distribution in
classical physics. There is no provision for operationally defined, objective

probabilities in a deterministic theory like classical physics. For this reason,
it appears impossible to found classical statistical mechanics on classical
mechanics alone. Although the quantal structure of the system 27 may
be of no relevance, one needs at least an auxiliary quantum mechanical

system 27' in order to introduce operationally well-defined probabilities
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into the system 27:27' acts as a "quantum-mechanical dice*)". The simplest

quantum-mechanical dice is, of course, the system 27 itself ; after its
quantum character has been used to define probabilities in an operational
way, the transition to classical mechanics may be performed. In this way,
densities in classical phase space (being the limiting case of quantum-
mechanical density-matrices) may be thought of as operationally defined
by the underlying quantum structure of the system.

3. The Equilibrium Mixture

After having given an operational and, therefore, objective definition
of a mixture of states, together witht a hought-experiment capable of
actually producing an ensemble of systems realizing this mixture, the
particular mixture which corresponds to thermal equilibrium may be
defined in the usual way.

The starting point is the observation that there exists a function S(P),
defined for all mixtures P, which may be used to decide whether one
given mixture may be transformed into another one by measurements
(in the widest sense used in section 2) or not. It has been proved by
v. Neumann 5) that the function

S(P) - Trace (UP log UP) (6)

given in terms of the density operator UP of the system 27 of the mixture
P has the following basic properties :

(1) In the free mechanical development of the system, it remains
constant (see sect. 4).

(2) When a measurement is performed on P, which transforms the
mixture P into the mixture P', then S can thereby only increase:

S(P') ^ S(P). (7)

The particular mixture P0 for which S(P0) is a maximum (under given
external conditions) has, therefore, the fundamental property of thermal
equilibrium, namely, that no manipulation, i.e. measurement, in the
widest sense, which leaves the external conditions unchanged, can
change P.

(This assumes that the maximum mixture P0 is unique. If there were
two mixtures P'0 and P"0 with S(P'0) S(P'^) > S(P) for all other P, then

*) An ordinary dice, being governed by classical laws, can only yield probabilities
of type A, not operationally defined ones.

23
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the mixture P0 given by the density matrix Up \ (UPt> A UPa«) would
have even higher S: from (6) follows)

S(P0) > S(P0') (8)

which contradicts the assumption).
One is, therefore, justified in identifying the mixture P0 given by the

maximum of S, under given external conditions, with thermal
equilibrium.

For a system 27 whose energy E is given within a margin A, the
equilibrium mixture is the "microcanonical" one given by the density operator

Ua=dA(H-E) (9)

where H is the hamiltonian of 27, and

\lii\x\<AÒAx) \0ii\x\>A (10)

From the microcanonical ensemble, all of equilibrium statistical
mechanics follows in a well-known manner.

That the special choice (6) for the function S(P) does not introduce
any arbitrariness can be seen by noticing that any mixture with fixed
energy can, by a succession of suitable measurements, be transformed
into the microcanonical one. It is sufficient to note that a mixture of two
orthonormal states u-, and u2, with weigths p1 and p2, by an unrecorded
measurement of the observables diagonal in

«, + 11, U, — 1

\/2
' p

is reduced to a mixture with equal weights p-,' p2 {pi+Pziß. Thus,
the equilibrium definition is unique.

The identification of S(P0) with the thermodynamical entropy and the
generalization of the entropy concept by (6) to cover also non-equilibrium
situations is then straight-forward.

It should be noted that the definition of thermal equilibrium arrived
at in this manner is the one actually used in thermodynamics, where
also thermal equilibrium is defined as the state from which no further
change is possible, and not as the state towards which the system
evolves spontaneously.

The two definitions are by no means trivially identical: the theorem
asserting their identity is the ergodic theorem which has not, as yet, been

proved. It is perhaps worth remembering that systems are known which
do not appear to tend spontaneously towards equilibrium, or at least
only extremely slowly. The best-known example of such a system is a

superconducting ring with its locked-in magnetic field.
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4. The Ergodic Problem

From the present (Gibbsian) point of view, the ergodic theorem does

not belong into the foundation of equilibrium statistical mechanics at
all. It is rather a fundamental theorem on non-equilibrium processes and
might be enunciated crudely as "All physical systems evolve spontaneously
towards thermal equilibrium", where thermal equilibrium is defined by the
microcanonical ensemble.

The fact that this theorem is difficult not only to prove, but to discuss
in its meaning, is but an indication of the fact that we have, as yet, not
even an approximately satisfactory foundation for non-equilibrium
statistical mechanics. Whereas (as outlined above) the quantum-mechanical
mixture representing the thermal equilibrium state may be defined and
constructed entirely without reference to the observer and his apparatus,
it appears necessary to introduce him in an essential way for the study
of non-equilibrium processes 5)7). This may be seen from the old observation

that, if the system 27, in a mixture U, is left to follow its quantum-
mechanical course undisturbed, the entropy S is a constant :

S(t) =-k Trace {U(t) log U(t)}

-k Trace {eim U0 eim- em log U0 ~em} (9)

-k Trace {U0 log U0} S(0).

Obviously, therefore, an increase in entropy can only arise from outside
interference, i.e. by the actions of the observer and his apparatus.
Furthermore, there are always idealized observers (those who observe quantities

commuting with the given density matrix) whose measurements
will not produce an approach towards equilibrium. It seems, therefore,
unavoidable to introduce "random" observers, or other "randomization"
processes into the concepts of non-equilibrium statistical mechanics.
These then allow a proof of the ergodic theorem and its corollary, the
iï-theorem1)6).

What the significance of this randomization process in non-equilibrium
statistical mechanics is, is as yet unclear. The purpose of this paper has
been to point out that this unsolved difficulty in no way interferes with
the much simpler problem of the foundation of equilibrium statistical
mechanics.

I am indebted to Professors N. Austern, J. M. Blatt and S. T. Butler

for discussions, and to Professor M. Fierz for reading the manuscript.
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