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A Dynamical Interpretation of the Thomas Precession

By V. L. Telegdi and R. Winston, University of Chicago, Chicago, Illinois, USA

In this note we shall discuss a phenomenon that has on and off oc-
cupied the minds of many physicists during the last thirty-five years,
i.e. roughly throughout that period during which the man to whom the
present volume is dedicated directed and stimulated experimental
physics at E.T.H.

The original spin hypothesis of Goudsmit and Uhlenbeck was to
attribute to the electron a mechanicäl spin s x/2 % and a magnetic
moment fi e%j2 mc, i.e. a gyromagnetic ratio g — 2. This hypothesis
was immediately successful in explaining the anomalous Zeeman effect,
where a bound electron is acted upon by an external magnetic field B.
However, when the same hypothesis was used to explain atomic fine
structure - where the effective magnetic field B' is a relativistic conse-

quence of the nuclear electric field E acting on a moving electron - it
first appeared that one had to attribute g 1 to the electron in order
to obtain agreement with the observed spectra! Thomas [l]1), very
shortly after the spin hypothesis had been published, succeeded in resolv-

ing this apparent discrepancy by noting that relativistically the space
axes of the successive instantaneous rest frames of the accelerated electron

- wherein B' is supposed to act - precess with respect to an inertial
frame where the electron has a velocity v and an acceleration v, at a rate

W;. — (y — 1) V > v/v2 (v X v)/2 C2. (1)

With the advent of Dirac's covariant wave cquation, which supplies all

consequences of special relativity so to speak automatically, this curious
precession discovered by Thomas lost some of its importance in atomic
physics, although this diel not stop the appearance of numerous papers
devoted to deriving Eq. (1). Very recently however, in connection with
experiments designed for measuring the anomalous g-factor of unbound
electrons or mu mesons [2], the Thomas precession has gained renewed
interest. To obtain a correct description of spin motion, its proper appli-
cation to those cases where the spinning particles move on macroscopic
orbits is in fact just as important as it was in the microscopic case [3J.

q The numbers in brackets refer to the References, pagc 252.
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Within the framework of special relativity, the Thomas precession
stems from the fact that two successive pure Lorentz transformations
are in general not equivalent to a single pure Lorentz transformation,
but to a Lorentz transformation plus a rotation. Thus the apparent
precession of the space axes of the instantaneous rest frames of a particle
is attributed to a kinematic effect. On the other hand, one may describe
the effect of the Thomas precession by saying that the spin of a particle
not subjected to any physical torque precesses with respect to an inter-
tial frame. Taking this point of view, one finds the kinematical
Interpretation unsatisfying and is led to seek a dynamical one. The Thomas
precession is exhibited by accelerated frames only, and it is natural to
explore whether the desired dynamical explanation can be uncovered in
the formalism of general relativity.

By considering the elementary action of a magnetic field on the magne-
tic moment of a particle we can anticipate that the additional precession
sought will arise from an analogous action of the axial vector gravita-
tional potential on the spin of the particle. In some sense we are thus
led to look for an analogue of Larmor's theorem, for the case where the
external field is a gravitational one. Instead of a single point particle
with spin, we shall for convenience consider a classical system of particles
and allow the dimensions of this system to approach zero. We expect
that the conclusions based on such a model will be applicable to "intrin-
sic" spin as far as this concept can be formulated classically at all.

Consider a system of particles moving in a central potential of un-
specified character. As in the derivation of Larmor's theorem, we are
interested in the perturbation of such a system by a weak external field,
in this case of gravitational character.

The action function for a single particle of mass m in a gravitational
field is

where ds2 — g dx
^ dxv (Greek indices run from 1 through 4, Latin

indices from 1 through 3). By a weak external field we mean that g/(1,

may be expanded as d/lv+yfll), and that only linear terms in y need be
retained. With this approximation, and also neglecting higher powers of
v/c (as is done in the usual derivation of Larmor's theorem), the addition
to the Lagrangian becomes, using (2)

We remark here that for a system of particles whose motion is entirely
determined by their own gravitational field one must add a terrn
(1/2) m0 (vjc)2 to L(;, which is comparable in magnitude to mg-v/c (i.e.
increase the mass by (1 + 0jc2). Using L0, one proceeds in complete ana-

(2)

Lg mg-v/c —m<P, where gt ic2yiit 0 c2y}il'2. (3)
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logy with the Standard derivation of Larmor's theorem and finds that
the effect of a perturbing homogeneous axial gravitational field G related
to g by g — (1/2) (G x r) is to superimpose a precession with an angular
frequency Q —Gj2c upon the unperturbed motion of the system. Note
that provided that the system is sufficiently small there are no restric-
tions on the magnitude of G itself. In this we depart from the usual dis-
cussion of the Larmor theorem which is restricted to terms linear in the
magnetic field. However, it is true in the electromagnetic case as well
that the contribution of the quadratic terms vanishes in the limit that
the system of particles becomes a point magnetic dipole.

To obtain the Thomas precession, we now consider an accelerated
frame F' in the absence of permanent gravitational fields, letting the
origin of F' follow the origin of our system of particles. In order to con-
form with the weak field requirement and to display the Thomas
precession in its space axes are related to those of an inertial frame F (in
which the motion of the system is specified) by a pure Lorentz transforma-
tion. That is, F' is related to F by

.v„ (f) +AßK (/') .V',, (4)

where /' is the proper time of the motion of the origin, and A/tv is a pure
Lorentz transformation. Denoting dA/lv/dt' by A/n, and d^Jdt' by u/r
we have dx/{ A/lK dx'K + (« +A Kx'K) dt', so that we may write ds2

— dx2 as

ds2 -dik dx'i dx k + {A i/lk-A i
Ä k) x\dx'kdt'

(5)
; (f2 ~A,ä A,,k x'iX'k +2 Aßk x\) dt'2.

We see that for x', sufficiently small, the weak field requirement is

rigorously satisfied and that g indeed has the form appropriate to a

homogeneous axial vector field (1/2) (Gxr), where GJ2 — (A/ljA/lk~
/l j /1/(Ä) (i, j, k permuted cyclically). Also as tends to zero, d (p/d x'{
takes on the obvious form iiA/ä, the acceleration of the system with
respect to an instantaneous inertial rest frame. Therefore in the total
Lagrangian the m <P term of (3) is just cancelled by whatever external
forces accelerate the system.

From the above considerations we conclude that the intrinsic angular
momentum and magnetic moment of our model of a particle with spin
will precess relative to F with the frequency ü — G/2c. Expressing G

in terms of w, the velocity of the system relative to F, by means of the
relations

A,k öik + [c*(Y Hl)] -14, -A-4
('•)

where y [1 - (ivjc)2]-1'2,
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we readily find that

G,\2c [c2(y+l)]~!(«,«, ~üj»k) or, =-[(y l)/w2]wxw, (7)

which, except for notation, is identical with (1).
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