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The Dirac Matrices and the Signature of the Metric Tensor

by L. O'Raifeartaigh
Institut für Theoretische Physik der Universität Zürich

(16. XII. 1960)

Summary. A problem mentioned by Jauch and Röhrlich (1955, p. 430) in
connexion with the Dirac matrices is solved. The problem concerns certain properties
of the matrices of charge-conjugation and time reversal. The reason for the
difficulty of this problem becomes clear. It is due to the fact that the properties in
question are dependant on the signature of the metric tensor g^ v. On account of
this latter result, the connexion between the Dirac matrices and the signature of
the metric is investigated further and the different special representations of the
Dirac matrices (i.e. Hermitian, real etc.) which can exist for each possible signature
are found.

Introduction
In carrying out the charge conjugation and time reversal transformations

in quantum field theory one has occasion to define the two matrices
C and D by

Yl Cy^, (~f)=^D^, (D

where * denotes complex, not Hermitian, conjugate, andy^ are the usual
Dirac matrices satisfying

{yfly,} 2g/tv, (2)

ga — 1» eoo — — 1 (Jauch and Röhrlich (1955), pp. 90, 94). For space
inversion, one has occasion to consider a matrix 5 defined by

Yo\ s/Vo\ s_j (3)

but it is obvious that S y0, so that the matrix S requires no further
consideration.

It follows immediately from (1) that

C*C cI, D* D dl, (4)

where c and d are numbers (I is the unit matrix), and it follows from (4)
that

c c*, d d* (5)

35 H. P. A. 34, 6/7 (1961)
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so that they are also real numbers. What does not follow so easily from (1)
and (4) is thatK ' c> 0 d<0 (6)

although these relations are absolutely vital for the invariance of the
theory under the transformations in question*).

As far as we know, the only proof of (6) existing consists in showing
that (6) is independent of the representation of the y 's, and then showing
that (6) is valid for some explicit representation (Jauch and Röhrlich
(1955), pp. 90, 430, especially, p. 430). This sort of proof is rather
unsatisfactory, particularly since this is the only point in field theory in
which it is necessary to use an explicit representation. It seems to us,
therefore, worthwhile to give a rather simple proof of (6) which is
representation-independent. This proof is given in 1.

The question might well be asked why this particular problem presents
so much difficulty. This question is discussed and the answer to it is given
in 2. The answer is that the relations (6) depend, in fact, on the signature
of the metric g „ in (2). To facilitate discussions concerning the signature
of the metric, a metric tensor M is then defined in 2 and this turns out
to have some very simple and interesting properties.

The general connexion between the signature of the metric and the
representations of the y-matrices is discussed in 3. It has seemed to us
that the most practical and useful way of examining this question is to
establish the various special representations of the y's (i. e. Hermitian,
real etc. representations) which can exist for each signature. Throughout
the paper we consider only irreducible (i.e. 4x4) representations of the
y's.

1. Proof of equation (6)

The first step in the proof of (6) is the rather obvious one of showing
that the signs of c and d are interrelated, so that, at any rate, cd < 0.

This is shown as follows. By inserting in (1) one can easily verify that
if C satisfies the first equation of (1), then

D a.Cy0y5 (7)

satisfies the second (a any number). Hence, by a well-known theorem
(Jauch and Röhrlich (1955), p. 425), D is uniquely determined in terms
of C (up to a constant factor). But then

*) Note the although C and D are defined only up to a constant factor, the
relations (4), (5) are invariant under a change of this factor. In fact, if we change
D, for example, to D' a D, a any number, we find that d' (a* a) d so that the
sign of d remains unchanged. The change in the magnitude of d under such a
transformation can be used to make \d\ 1, thus determining D to within a phase
factor. Similarly for C.
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d D* D a* oc C* y* y* C y0 y6 a* oc C* C y0 yB y„ yb

- a* a C* C yl y\ (-1)3 a* a C* C - a* a c (8)

as required.
The second step in the proof consists therefore in proving either c > 0

or d < 0. The question is : which In (1) the first equation is the more
compact one, and so it would appear that c > 0 should be the easier
relation to prove. But, in fact, this is not the case, and d < 0 is much
more easily established. The key to the solution is to note that the second

equation of (1) can also be written compactly, namely, as

y;-l Dy/òD~i (9)

and to note that (9) suggests making use of the well-known result (proved
below for completeness' sake) that unitary representations of the y-
matrices always exist. (We do not, of course, need to give such a representation

explicitly, we need only to know that it exists). For this class of
representations (9) becomes

?7 Dy,D-i (10)

(~ means transpose). But for all representations, Pauli (1936) has defined
a matrix B by

X Bx^1 (n)

and deduced that from (11) alone

B~ b B (12)

with b — 1.

Hence, for the unitary representations

D ßB (13)

where ß is some constant, and so

d D* D ß* ß B* B - ß* ß B*~ B - ß* ß B+ B < 0 (14)

and since the sign of d is representation independent, d < 0 as required.
It remains only to give the usual proof that unitary representations

of the y-matrices exist : Out of the four y-matrices one forms the usual
sixteen linearly independent matrices (1, y a „, y ys, y6) and also the
sixteen matrices (— 1, — y — a — y yB, — y5). One sees immediately
that these thirty two matrices form a group. Hence, the problem reduces
to proving the standard theorem that any representation of a group can
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be made unitary by a similarity transformation. This is proved as follows.
Let Gr, r 1...» be « matrices representing a group. Let

A=SfGfGs. (15)
s l

A is Hermitian and, therefore, a unitary transformation u exists so that

u A u+ I (16)

where A is a (real) diagonal matrix. Then

g^^wG^+A-1'2 (17)

is a unitary representation of the group.

2. Rôle of the signature of the metric: Metric Matrix
In connexion with the proof given in 1 two questions might well be

asked :

(1) Although no use is made of an explicit representation of the y's in
the proof, nevertheless use is made of the existence of a certain class of
representations. Would it not be possible to find a proof which does not
make use of even the existence of such particular representations (such
as Pauli's proof that for the 73-matrix, b — — 1)

(2) It might be asked why the problem of proving c > 0, d < 0

provides so much difficulty (when again, the proof that b — 1, for
example, though very ingenious, is relatively easy)

These two questions are intimately connected, and both are answered

by noting that the relations c > 0, d < 0 differ from the relation b — 1

in one very fundamental way, namely, that whereas the relation b — 1

depends only on the group properties of the y-matrices, the relations
c > 0, d < 0 depend not only on the group properties but also on the
signature of the metric tensor used in (2). That is to say, b — 1, no
matter what signature the metric has, but c > 0, for example, only for
certain signatures (of which (+-H—), of course, is one). To persuade
ourselves of this, let us consider the signature (+ + ++). With this signature,

the unitary representations of the y's (which always exist since in
the proof of 1 the signature of g played no rôle) is also a Hermitian
representation (y y"1 y+). But then the first equation of (1)
becomes for this representation

y^CyX"1 <18)

so that all the arguments that were applied in 1 to show that d < 0 can
be applied here to show that c < 0. Since c > 0 for the signature (+-H—)
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in 1 we see clearly that the sign of c is signature dependent*). This is

why it is so difficult to determine the sign of c (question (2)) and why a

general proof depending only on the group properties of the y's is not
possible (question (1)).

Having seen that the signature of the metric plays such an important
rôle in questions such as those just considered, we have thought it worthwhile

to investigate the influence of the signature on the representations
of the y's in a general way. Practically, we do this as follows. We
investigate what sort of special representations of the y's (Hermitian, real
etc.) can exist for each signature. The advantage of this method is that
once one knows for any metric which sort of special representations exist,
one can determine immediately and without the slightest trouble the
signs of all such troublesome constants as b, c, d above. For example,
let us suppose that we know (it will be proved below) that for the metric
(+++—) real representations exist. Then in (1) we could assume that we
were using such a real representation so that (1) would read

Y,= Cy,C-i (19)

from which
C a/, c a*a>0 (20)

follow immediately.
Before going into this question of special representations in detail

(which will be done in 3) we find it useful to define here a metric tensor M
by

y^y;l MYllM-K (21)

Non-singular M always exists since y
~1 is a possible representation of the

y This matrix M has a very interesting and useful property, which we
shall now describe.

There are sixteen possible signatures for the metric g which may be
divided into five classes as follows :

+ + ++) with 1 member,

+ + +—), (-H h) etc. with 4 members,

-H (H t-—) etc. with 6 members,
-| (—| etc. with 4 members,

with 1 member.

(Of course, in physics, only three of these metrics are used extensively
(+ +++), (++ +—) and (-)•) The property of M, which we wish

*) Of course, in the case of the metric (+ + + +), c < 0, and not c > 0, is
just what is required by the charge conjugate transformation, since the coordinates
Xfi have different reality properties for this signature.
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to describe is the following. For the sixteen possible signatures listed, the
corresponding sixteen possible M's are

L Ys Y/i- Ysafiv> Yß> Yï, respectively!

(the pi in y5 y for example, is equal to that integer for which the minus
sign appears in the signature).

A further property of M will be very useful. If B is the Pauli 73-matrix
given by (11) and (12) then

M- BMB^(riM) (22)

where rjM, a numerical factor, is equal to (1, — 1, — 1, 1, 1) for the five
classes of signatures shown above, in the order listed.

3. Special representations of the y^-matrices
We shall establish in this section the following two theorems.

Theorem I (metric independent theorem) :

(a) Unitary representations of the y's exist for all signatures, anti-
unitary representations for none.

(b) Symmetric representations exist for no signature, antisymmetric
representations exist for no signature.

Proof: (a) The first part of (a) has already been established in 1. To

prove the second part, let y be one of the existing unitary solutions and

y ' a supposed anti-unitary solution. Then by the usual well-known
theorem, quoted in 1, non-singular S exists such that

y' =sYllS-1.
Taking Hermitian conjugates

by hypothesis

taking the inverse
y;-1=5-IX;X+

(23)

~Yn =S~1+yX+.
Hence

5y/,S-1=S-1+(-X5+=5-1+y5y/Iy-1S+,
so that by the same well-known theorem

S=S~^y5. (25)
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Hence

Tr S+ S Tr y6 0 (26)

which is impossible for S 4= 0. Thus (a) is established.
To establish (b) we use the procedure used by Pauli to prove that

B~= — B. We suppose that a symmetric representation of the y exists.
Then it is easy to show that the ten linearly independent matrices a v and

y y5 are anti-symmetric, which is impossible since only six linearly
independent anti-symmetric 4x4 matrices exist. Similarly the existence of
an anti-symmetric representation of the y would imply the existence of
the ten linearly independent anti-symmetric matrices y a „„. This
completes the proof of theorem I.

Theorem II (metric dependant theorem) :

(a) Hermitian representations of the y 's exist only for the signature
(+ + + +), anti-Hermitian only for

(b) Real representations exist only for the signatures (+-H—) etc. and
(-H etc., pure imaginary only for h) etc. and (+-) etc.

Proof: (a) We let y'ß be a Hermitian representation of the y 's and let
y be the usual unitary representation. Then with non-singular S

Yß= SYßS-1.

Taking Hermitian conjugates

y'+= S-Ì + V+ S+,r ß /ß '

by hypothesis

Hence

(27)

y; 5"1+y;x+.

SYllS-i=S-^y;lS+ (28)

or

rX+sX=s+X (29)

so that
Tr S+ S Tity, S+Sy/l Tr S+Syl y2 Tr S+ S (30)

i.e. for all pi

yI 1, or g„„=l (31)

as required.
The second part of (a) is shown by noting that a representation for any

metrics is obtained by multiplying by a factor i any representation of the
conjugate metric (i.e. the metric obtained from the first by changing in
the signature all the pluses to minuses and vice versa).
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(b) the proof of this part of Theorem II is more difficult. Let y'ß be a real
representation of the y „'s and y a unitary representation. As usual, with
non-singular S

y'h= 5rXX

(32)

taking complex (not Hermitian) conjugates

Yl*=S*y;S*-\
by hypothesis

y'h= S*Y„1~ S*~1= S* B M7/lM-1 B-1 S*-1

by definition of M (the metric tensor which we now use for the first time)
and 73.

Hence by the usual theorem

BM <xS*-1 S (33)

(where a is a number) so that

B* M* B M a*oc S-1 S* S*-1 S a* a > 0. (24)

Hence from (22)

rjM M*~ 73* 73 M > 0 (35)

or from (12)

- rjM M+ 73+ 73 M > 0 (36)

i.e.

rlM < 0

From (22), however, this is possible only for the signatures (+ ++ —) etc.
and (A-A etc. It still has to be shown that in these two cases real
representations do, in fact, exist. To show this let ax and a2 be the two real
(2 X 2) Pauli spin-matrices. Then

0 ax\ /0 a2\ / 0 axa2\ /1 0

ax 0 / ' \a2 0 j ' \axa2 0 J' ^0-1
and

/0 ax\ /0 o,\ I 0 ax a2\ / 0 1

U 0 / ' U 0 ' U a2 0 )' {- 1 0

(37)

(38)

are real representations for the signatures (+ + H—) etc. and (+H etc.
respectively. Thus the first part of (b) is established. Since, however

h), etc. and (+4 etc. are metrics conjugate to the two just
mentioned, the second part of (b) follows immediately.
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