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On the Asymptotic Condition in Quantum Field Theory*)

von David Ruelle
Eidgenössische Technische Hochschule, Zürich

(11. XII. 1961)

Abstract. A 'space-like asymptotic condition' is proved which allows Haag's
approach to the asymptotic condition to be carried out rigorously in the frame of
the Wightman axioms.

Introduction

Two main approaches exist to the asymptotic condition in 'axiomatic'
quantum field theory. One is due to Lehmann, Symanzik, and
Zimmermann16), and postulates the convergence of field matrix elements to
matrix elements of free fields.

The extremely useful reduction formulae which follow yield
expressions for the elements of the S-matrix, the analytic properties of
which may then be studied, and also systems of equations (r- or r-
equations) expressing essentially the unitarity of the S-matrix16)17).
A complete justification of the L.S.Z. formalism involves however a
number of new requirements on domains of definition of field operators
and continuity of the boundary values of the Green function in ^-space.
These requirements are not of fundamental physical significance and may
well not be independent since e.g. the use of the unitarity condition gives
information on the analytic behaviour of the boundary values of the
Green function18)24). From the purely axiomatic point of view a deeper
investigation of the asymptotic condition is necessary and it is probably
reasonable to accept provisionally the fact that the L.S.Z. formalism
stands at a lower level of rigour than for example that of Wightman 21).

The other approach to the asymptotic condition is due to Haag9)10).
Haag's main idea is that it is possible to construct asymptotic ingoing
and outgoing states as strong limits in Hilbert space, if a certain 'spacelike

asymptotic condition' is verified by the vacuum expectation values
of products of field operators. This construction is physically transparent
and although the results obtained are less powerful than those of L.S.Z.,

This paper was presented to the E.T.H. as Habilitationsschrift.
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they give a definition of the asymptotic fields and of the S-matrix of the
theory.

In what follows we will show that Haag's programme may be carried
through rigorously in the framework of the Gârding-Wightman axioms if
one introduces as a new postulate the completeness of the asymptotic
states and spectral conditions connected to this.

The completeness of the asymptotic states is a physically reasonable

requirement and is independent of the other axioms as shown by
counterexamples (see e.g. ref. 22) p. 57).

In conclusion, we may introduce in the theory asymptotic states and
fields and an observable quantity, the S-matrix.

1. The axioms of a field theory

A field theory according to Wightman 21)22) is defined by a finite (or at
most countable) family of fields Aß(x), which are operator-valued
tempered distributions*). This means that to every % and cpß e X4 there
corresponds an operator

A«(cp)=fdxZ<pAx)A%x) (1)
J ß

on the Hilbert space § of states. These operators, which are not bounded,
are assumed to be defined on a common linear manifold D dense in jr>

(for a discussion of these points see Appendix).
Furthermore, if <Z>, We D, cp^- (0, A(cp) W) should be a continuous

linear functional on X The following axioms are then introduced or
emphasized

1. The metric in § is positive definite.

2. The theory is covariant, i.e. there exists a unitary representation U(a, A)
of the covering group of the inhomogeneous proper Lorentz group in §.
An energy-momentum operator P is then defined by

U(a, 1) XX. (2)

The fields transform according to irreducible representations S"ßV(A)
of the covering group Ca of the homogeneous proper Lorentz group:

U(a, A) A;(x) U(a, A)-^ £ S;v(A~x) A"v (A x A-a) (3)
V

According to whether S* „ is a 'single-' or 'double-valued' representation
of the homogeneous proper Lorentz group, Aß(x) is called a Bose field or
a Fermi field.

For the theory of distributions see ref.
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3. There exists a unique state (the vacuum), corresponding to a vector Q

in£ suchthat PQ=0.
The vacuum is stable : the spectrum of P belongs *) to V+.

4. The theory is local. Let axx? — 1 if A" and A"' are both Fermi fields,
axx, 1 otherwise, then

A;(x)A^(x') axx,A;(x')Aß(x) if (x'-x)2<0. (4)

The sign axx, is determined by the theorem of 'connection between spin
and statistics'5)2).

5. Ax(cp) D <r D, furthermore D may be taken as the linear manifold of
the vectors obtained by applying any polynomial in the operators
A"(cp) to the vacuum.
That D is then dense in § is the axiom of completeness of the theory.
(See also Appendix.)

The vacuum expectation values

3B(*o, xx,...,x„) <A;:(x0) A;i(xx) AH(x„) >0 (5)

are (tensor) tempered distributions as a consequence of Schwartz' kernel
theorem (see e.g. ref.8) p. 62).

Besides the above axioms, we should exclude the occurrence in §> of
some unphysical irreducible representations corresponding to mass zero
of the covering group of the inhomogeneous proper Lorentz group (see

e.g. ref.23)). We will however in what follows use the stronger requirement
that there exists a positive lowest mass pt, in the theory :

6. Apart from the eigenvalue 0 corresponding to the vacuum, the
spectrum of P is contained in V+, pi > 0.

Finally, the introduction of the axiom of completeness of the asymptotic
states and the discussion of the related spectral conditions will be possible
only later.

We will from now on drop the indices x and pt of the fields A for nota-
tional convenience wherever this does not lead to ambiguity.

Consider now a vacuum expectation value like (5), the occurrence of
the vacuum as an intermediate state in this expression hides the existence
of the positive smallest mass pt of the theory. To remedy this situation,
Haag9) has shown that one may define 'truncated' vacuum expectation

*) We denote by V + the open forward cone and let

vi {p-.pev+,p2>p2},
V+ and V^_ are the closures of V+ and V^_.
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values where the contributions from the intermediate vacuum state are
subtracted in a manner which is symmetric with respect to the
permutations of the « + 1 field operators.

If Qk is the family of all partitions of the set {0, 1, n} into k A- 1

subsets : X0, Xlt..., Xk, and lüß(x)x. the vacuum expectation value of the
product of the fields A(x-), i e Xj, in natural order, the formula

n k

mx)=EE°n^x)xi (6)
k-0 Qk ;_0

may be used to define 3B recursively on the number of variables, a is a

sign factor originating from axiom 4. Let ti be the permutation from
(0, 1, n) to (X0, Xx, Xk) where the elements of each Xj are written
in natural order and let n' be the permutation induced by ti on the indices
of the Fermi fields, then a Az 1 according to whether n' is even or odd.
We will also write

9B(*0, %,..., *„) <A(x0) A(xx) ...A(xnAl (7)

for these truncated vacuum expectation values.
The translational invariance of the theory is expressed in terms of the

(possibly truncated) vacuum expectation values by the relation

2B(^0 + a, xx A- a, xn + a) 2B(*0, xx, xn) (8)

where a is any four-vector.
With the above axioms and the definition of truncation, we are in

position to study the behaviour at large space-like separations of certain
vacuum expectation values.

2. Space-like asymptotic condition*)

We start with a series of definitions.
Let xs denote the family xi0, xiX,..., xlr(i) of four-vector variables and

A,(x,) A(xi0) A(xlx) ...A(xir(i)),

AAxiA-ai) U(ai,l)Ai(xi)U(ai,l)-K

We call A{ a Bose or Fermi operator**) according to whether it contains
an even or odd number of Fermi fields.

*) The asymptotic behaviour of the vacuum expectation values has been studied
in ref. 6)x)13) but the results obtained there are not adequate for our later purposes.

**) Instead of products of fields, one might take more generally 'cycles', i. e.

essentially products of T-products19), if these are well-defined.
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If ti g SB+1 (symmetric group of degree n + 1) is the permutation such
that 7r(0, 1, n) (i0, ix, in), let an Az 1 according to whether tc,
restricted to the indices of the Fermi operators is even or odd.

We write

Tn(x A- a) V(x0 A- a0, xxA- ax, xnA- an)

o„ <\ (*<. + aù AH K + ai) ¦¦¦K K + a0 >o - (^

F;(a) J dx <p(x) T" (x A-a) (2)

where <p is assumed to belong to the functional space X (see Appendix).
In general we will take the «,- as purely space-like: a{ (0, at) and

write in this case a( instead of at Consider a definite configuration of the

at. The diameter X of the configuration is given by

X2 max (av — a{)2.
i, v

We assume that this maximum is obtained for i j,i' j' so that I2

(ay — ay)2. Consider also the family of all partitions of the set {0,1,..., n)
into two subsets X, X' such that /' e X, j' e X'. The maximum pt of the

distance of the configurations (a^)ieX, (a{)i>ex' is given by

pt2 max [ min (ar — a
X [ieX.i'eX'

We assume that this maximum is obtained for the partition X Y,
X' Y' and that pt2 (aL, - «()2, leY.l'e Y'.

We may now remark that n pt 2: A.

The truncated vacuum expectation values obtained from (1) by
subtracting in a symmetric way the terms for which the vacuum appears as

intermediate state between the A{ will be called T" and we write

F;(a) Jdx <p(x) T° (x + a). (2')

Finally, if Y {i0, ilt ik}, Y' {i'Q, i[, i'k,}, k + k! n — 1, where
the indices in each sequence are written in natural order, we define the
permutations I and / such that

7(0,1, n) (0,1, ...,*),

/(0,1, ...,«) (i0, ix,..., ik, i'0, i[ i'A)
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Lemma : For any positive integer N

lim X [/>>) - Fi(a)] 0 (3)
A—>oo

when the configuration of the at remains such that the above defined j, j', Y, Y',
I, I' stay the same.

Note first that T'(x) — TA[x) vanishes when all xia, ieY are space-like
to all xVa,, i'e Y', because of locality. tp(x) therefore does not contribute
to the integral

K&) ~ H® =fdx *(*) X' (* + «)- TJ (x A- X (4)

when [(xia — xVa,) + (at — ar)]2 < 0 for all i e Y, i' e Y'. Introducing a

positive distance by

Aia. ~ Xi'a.'\\ (Xia ~ Xi'a') + \Xitx. ~ Xi'A) '

we see that this is satisfied if
:i2

Xia Xi'aA y112./ A*

2 '

/2
or \\xia-xra'\r< rrzY because n/t^A,

n r(i) 2

or w*w^e E\\x<«\\*<i^- (5)
t-0 oc-0

Inequality (5) defines in «-space the inside of a sphere, the radius of
which is proportional to X.

On the other hand, the transformation Tn(x) -> T" (x + a) is a translation

in * for which we may disregard a common additive term a in all ai
because of the translational invariance of the theory. The vector of the

translation x -> x A- a has then a length || a\\ smaller than X ]/L in «-space
n

if L nA- 27 yW-
t-0

Consider now a family of non-negative functions ì)„(x) e 'AD, v taking
any positive integral value, such that the i)„(x) and their derivatives are
bounded uniformly in v, i)„(x) ï)„([j x ||) 0 if |] * || > v A-1 or || *|| < v — 1,

and 2J ï)„(*) 1- We may then write

F',(a) - FJ(a) £ [F'Ja) - F^a)] (6)

in \/~2

X
V > — - 1

where gp„(#) i)v(x) <p(x).
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Since T'(x) — TJ(x) is a tempered distribution, it may be written as

fJ(x) - fJ(x) D g(x)

where D is a derivative monomial and g(x) is a continuous function with
at most polynomial increase. Thus

Kß - Hß) =Jdx VM Dg(xA-lt) ±Jdx [D cpv(x)] g (* + «). (7)

The numbers max \D (pv(x) | are decreasing faster than any power of
*

v_1. On the other hand we may write \g(x) | < C (1 A- ||#|)2)*/2 where C is
a positive constant. Thus

IX («) - H («) < S (v A- 1) max |D <p„(x) \C max (1 + ||* + «||2I
'' " * ||*|| <r+l

A/2

< [S (v + 1) max | D <pv(x) \ C (1 + 2 (v + l)2)*'2] (1 + 21, X2) m

where S(v + 1) is the volume of the sphere with radius v + 1 and we have

used the inequality 1 + ||* + «||2< (1 + 2||*]|2) (1 + 2|]«||2).
Obviously the numbers c„ max \D <py(x) \ [C S (v + 1) (1 + 2 (v + l)2)*'2]

decrease faster than any power of v-1. Therefore, in the right-hand side
of the inequality

I F'fi) - &£*) I < / E ov\(l + 2L X2) «2

2nV~2

the first factor decreases faster than any power of A-1. Obviously then

lim XN [F*Xa) - Fifa)] 0
A—>CO

for any N, which was what we had set out to prove.
We introduce now in »-space the new variables

x xi,o ' £ xi/o ~ xi0o > ?j xio — xi0o {* * *o) '

Si- — xi'o — Xie'0 (* * *o) '

f«« *,-« - *io (a * 0) gVa, xVa. - xvo (oc' * 0)

where », t0 g Y; i', ^ g Y', and we denote by <f the family of all f,-, £,.,

f<«> f»'«'• Then
r» r-(f §), y *(*, f. I ¦

Fourier transforms are defined by

g TAP, P) (2ti)~2L fdÇdÇ e-^PS + p^ 7>(|, g),
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tp(p, P, P) (2 7i)~2(L + 1) fdxdÇd§ei<px+Pi+PS) y(x, Ç, §)

and we have

.P» (2 n)2 fdP dPcp(0, P, P) g f"(P, P) x

x exp 2 p K' - a0 + E pi («i - \) + E pr K (8)

This equation shows in particular that F*(a), F^,(a) belong to the
functional space 0M of the infinitely continuously differentiable functions
with slow increase.

Let now K G S„+1 be the permutation such that K (0, 1,..., n)

(i'0, i[, i'k>, i0, ix, ik) then g TAP, P) vanishes unless P e V+ and

g TK(P, P) vanishes unless P eVI. This results from axiom 6 and from
the truncation of vacuum expectation values.

If we define
t̂p(fi, P, P) h(P) ip(p, P, P) g X

where h e 0M is equal to 1 in V+ and vanishes out of V+, we have
obviously _

F{(a) F{(a), F» 0. (9)

Now, in exactly the same way as we proved (6) and under the same
conditions we obtain

lim X [Pfi) - /X(a)] 0 (10)

which implies - -,
lim X?FAa) 0 (11)

where we have written Fv(a) instead of Fzv(a).

Equation (11) obviously holds for aU the possible choices of /, /',
Y, Y', I, I' introduced at the beginning of this section, and since there is

only a finite number of such choices, it holds when X2 max (a{ — a{.)2
i, i'

goes to infinity without any further restriction on the configuration of
the a{.

According to (7), taking any partial derivative D with respect to the

«i of Fv(a) simply amounts to modifying (p, so that

lim XN D F(7) 0 (12)
A—>>oo

Therefore, considering Fv(a) as a function of the differences between the
a{, we have :
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Theorem 1: Fqi(a) as well as D0 Fv(a), where D0 is any derivative
monomial with respect to the a\, are functions in A/in.

Let us now introduce the regularized local fields

dxcp(x — a) A(x) U(a, 1) / dx cp(x) A(x) U(a, l)"1

and more general operators

£,(«,) U(a0 1) A,{<p,) U(a0 l)"1 (v g X) (13)

of a type considered by Haag.
We call xt the former variables au x denoting the family x0, xx, xn

of four-vector variables, and write

F(x) <B0(x0) Bx(xx) Bn(xn)>0.

This means essentially that we have taken (p y>0 ® <px ® ¦¦¦ ® <jPn-

We say that Bt is a Bose or a Fermi field according to whether A,- is a
Bose or a Fermi operator. The definition of the truncated vacuum
expectation values F(x) is then obvious and theorem 1 insures that F(x),
D0 F(x) where D0 is any time derivative monomial, belong to X3„ as

functions of the differences between the x{.
The physical meaning of the theorem appears if we take for instance

0(x) B(x) Q with |0| 1, then

lim (0(x),B'(O)0(x))=<B'(O)}o
x« - 0, ||T||-i.oo

i.e. the state 0(x) is asymptotically localizable in the sense of Knight14).

3. Asymptotic behaviour of the solutions of the Klein-Gordon equation

Let f(x), x= (x°, x), be a positive-frequency solution of the Klein-
Gordon equation :

(O - m2) f(x) 0, m>0, /gX'. (1)

If we write ^
f(x) (27i)-2J dpe-'P'f(p) (2)

we have ^ ~ -»
f(p) 6(p°)ò(p2-m2)f(p). (3)

We assume that f(p) is infinitely continuously differentiable with compact
support *) : - _»

f(P)e£)s. (4)

*) This assumption might be weakened but it is easy to see that the lemma below
does not hold for arbitrary normalizable solutions of (1).



156 David Ruelle H. P. A.

Let now übe a vector such that (u0)2 + w2 1 (u is on the euclidean unit
sphere) and let

fAA)=f(tu) (In)-2 J'dp e-wfo) (5)

We may then write

fu(t) (2Tt)-^j'dse-^'Fu(s),

Fu(s) (2 »)-»»y dfi d(s-pu) J(p) (6)

From (3), (4), (6) one sees easily that if the line t u intersects with the
forward sheet of the hyperboloid p2 m2ata point outside of the support
of f(p), Fu(s) is an infinitely differentiable function of s with compact
support.

This is always the case if u is sufficiently close to the light-cone or
space-like.

In order to treat the case where t u intersects with the forward sheet

of the hyperboloid ^>2 m2 inside of the support of f(p) we put u along the
time axis by a Lorentz transformation. Then

Fu(p°) (2 ti)-*2 fdfi d(fi°) ô (fi2 - m2) t(p)

ì (2 A)-*2 0(pO) J \p | d(p2) ô (fi2 - ((po)2 - m2))JdQ f(p)

d(p°- m) i/i^0]2^~m?g((p0)2 - w2) (7)

where
g(p2) ±(2Ti)-*2fdQ~f(p)

g is infinitely continuously differentiable on the closed positive semi-axis.
We may also write

Fu(fiO) =^p° -mg (fi0 - m)
where

g(p°-m) 6 (fi0 - ot) j//>° + m g ((p0)2 - m2).
Then

fu(t) (2ti)-1>2 jds e~isi y's A- m g (s - m)

(2ti)-1>2 eimt I ds e~ist^~s ~g(s). (8)

We may write

/s g(s) |Xg(0) e-' A- |/V(g(s) - g(0) e-*)
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where the Fourier transform of the first term decreases like 11\-*2 in view
of the formula

oo

(2^)-1'2 fdse-1" s-w =-ÌJÌ *-«». (9)

o

The second derivative of the second term is absolutely integrable, so that
the Fourier transform of this term is bounded by a(u) \t\~2.

Allowing again u to move, we have shown that

\Ut)\<A(u)\t\-*2 (io)

where A (u) is continuous.
Furthermore, when u is outside of a certain cone, contained in the

future light cone and determined by the support of f(p), fu(t) decreases
faster in 111 than any inverse polynomial, uniformly in u on the compacts
of the unit euclidean sphere. From this we may now conclude

Lemma:

1. max \f(t, x) | decreases like t~312 when t -> + oo,
X

2. [dx | f(t, x) | does not increase faster than t*2 when t -> + oo.

The second statement comes from the fact that the region in which

f(t, x) does not decrease faster than any inverse polynomial has a volume
which increases like ts.

These results obviously extend to negative-frequency solutions of (1).

4. Haag's strong convergence asymptotic condition and the
construction of asymptotic fields

Using the space-like asymptotic condition (theorem 1) and the asymptotic

behaviour of the solutions of the Klein-Gordon equation (lemma),
Haag has shown that one may construct asymptotic states as strong
limits in Hilbert space.

Let ft(x) be positive frequency solutions of the Klein-Gordon equation

Ufi) 6(fi°) ô(p2 - m2) Ufi) f, g Q)%

and let

B{(x°) 2 ti ifdXi [/,(*,)• ±Q B{(xt) - j^ /,(*,)• XX) ] • (1)

Then, Haag's result is the following
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Theorem 2: We assume that the state B{(xt)*iì belongs to a discrete
irreducible representation X with mass mi of the covering group of the inhomogeneous

proper Lorentz group, and that B,(#,-) Ü 0. Let 0(f) be a vector

obtained by applying to the vacuum a product of n operators B((f)* or Bff(t).
Then

lim 0(f) 0om and lim 0(f) 0in
t^ + OO t—>— oo

exist in the norm and define asymptotic states.

We will also use the symbol 0ex where ex may be replaced consistently
by in or out. For a discussion of the physical reasons which justify the
interpretation of the 0ex as asymptotic states, we refer the reader to
Haag's papers9)10)4).

The necessity of finding suitable fields B{ brings limitations to the
construction of these asymptotic states.

We know that there may exist in §>, apart fiom the vacuum, discrete
irreducible representations of the covering group of the inhomogeneous

proper Lorentz group corresponding to positive masses and different spin
values23). These representations generate a subspace §j of §>.

Our formulation, stated below, of the axiom of completeness of the
asymptotic states implies that there exist fields B* such that, applied to
the vacuum, they yield vectors belonging to representations of a family
which already generates §>x.

In a physically reasonable theory this should follow from spectial
properties connected with the stability condition and selection rules.

In order to prove theorem 2, we consider the expression

(¦£*w|-s-*«>.

perform the derivations and expand into a sum of products of truncated
vacuum expectation values. These are of the form

1(f) Jdx0 dxx...dxk f'0(x0, t) f[(xx, t) f'k(xk, f) F'(xx-x0, xk- xk_x)

where F' G Afìk. It follows then from the lemma of section 3 that 1(f)
behaves like |£|-3/2(*-D at infinity. Because of our assumptions, factors
with k 0 do not appear. On the other hand, terms containing only
factors with k 1 vanish because of the identity djdt Bfo)* Ü 0. Finally
we see that || djdt 0(f) |[ decreases at infinity like |£|-3'2 so that this
expression is integrable and 0(f) has strong limits as t -> +_ oo.

We supplement this argument of Haag by a series of remarks.

1. 0ex is independent of the particular Loientz frame used to define it.



Vol. 35, 1962 Asymptotic Condition in Quantum Field Theory 159

To see this take an infinitesimally different Lorentz frame, 0(f) becomes

0(f) + d0(t) but an argument similar to the above one shows that
lim \\d0(f)\\ =0.

(-?±00 " "
2. The scalar product of two ingoing or of two outgoing asymptotic state

vectors 0ex is a sum of products of factors of the form <.Bfl'(f) Z?'(£)*>„
which are independent of t. These products are preceeded by a + sign
as required by the definition of truncated vacuum expectation values
when Fermi fields are present.

We introduce now the following new assumption in the theory :

Axiom of completeness of the asymptotic states

The finite linear combinations of ingoing state vectors 0in defined by
(2) form a dense subspace Din in Hilbeit space.

Because of the TCP theorem12), a similar statement holds for the
outgoing states.

3. Linear operators Bfout, (B'out)*, 5{n, (BA)* are defined on jDout, Din by

B'ex0ex= lim B>(t)0(t),(B>J*0ex= lim {B>(t))*0(f) (2)
i—^±oo -*± oo

;

All we have to check is that if W(f) £ 0{(t) and 0ex 0 then
t-0

lim B'(f) W(f) 0, but since the vectors W(f), Bf(t)* B!(t) W(f) both have
(—i-± 00

a limit, that of W(f) being zero, we have indeed lim (W(t), Bf(t)* Bf(f)
W(t)) o. '-*±0°

Obviously (Bfex)* is the hermitean conjugate of Bfex. Let

/«,...„.(*) i2™)-2 (dP e~ip' 0(P°)o(P2 - m2) ]Xi,„ajP),
(3)

£*,...«„(*) (2 A)-2j dp e-iP* 6(po) Ò (p2 - ot2) ga,...«„(?) ¦

/a,...a2 '^...«s e X*, be positive frequency solutions of the Klein-
Gordon equation, symmetric with respect to the undotted spinor
indices tx.x, <x2s.

Let

I=?i). ffi-d1), o-2= G"'), cr3=(1„1) (4)

and

[<)«<*] I d„ +£ af dt, [p*?] ipo-£oj pt (5)
t-1

where af is the transposed of a(.

3

». i
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If the following expression

(f,g) =2nifdx fi..-Jx) l (- -^ M) (- ± di.A.) X

X Sßl...ßJx) (6)

makes sense, it defines a Lorentz invariant scalar product of / and g.
We may then write

(/, g) 2TiiJdxJdpx d(p\)ò(p\ - m2)fdp2 6(p°2) d(p\ - m2) x

x (-0 (Pi + Pi) e^e-^~fl...^s (Pi) 4r - ^T- Ì-..A.A) -
fdp 6(p°)ô(p2-m2)~fl...,jP) *£- -^~-lß,...ßß) ¦ (7)

With the help of a function cp g A/, we have defined an operator B(x),
and we assume that the vectoi B(x)* Q belongs to the representation T
with mass m and spin s.

Every vector 0 in r may be represented uniquely by a family ha ^
of positive-frequency solutions of the Klein-Gordon equation normalizable
in the sense of equation (6)+). We introduce only undotted spinor indices
in ordei to avoid the introduction of subsidiary conditions on the free

fields7).
Because of îemark 1 and the completeness of asymptotic states, it is

obvious that B{x is completely determined by (B1)* Q and therefore by
the corresponding Aa ...a It is furthermore an anti-linear functional of

^...oc and we may write Bfex Bex (&„,...„„). We will now show that

BrJh„ „ is defined for all h„ „ e AD-

First, one checks easily that if gai ai
is associated with the vector

(2n)2B(0)*Q, then

BL Bex(hai...«J Bex(}~gai...J. (8)

Let now

B'(0) fdpi(A) cp(A) U(A, 0) B(0) U(A, 0)-1
c,

where cpeCA and has its support in a sufficiently small neighbourhood
of unity in C2 (covering group of the homogeneous proper Lorentz group).
This transformation B -> B' corresponds to a simple change cp -> rp',

+) ^...otis is completely determined by (0, U(a, A) d>) i. e. in our case by the
Wightman functions.
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but has the effect that ga _
becomes g'ai,..at which is infinitely

continuously differentiable. Therefore &„,... a,, f Sai... a,«
G °^-

The tensor formed by the 2s + 1 numbers gài... a, (0) may ^e assumed
to be different from zero, and because of the irreducibility of the
corresponding representation of the covering group of the three dimensional
rotation group, one may by applying elements of this group obtain 2 s + 1

linearly independent tensois g„*..a (0), 1^ot^2s + 1. The

corresponding functions g'a™..a[p) are then linearly independent in a
neighbourhood of the origin, and it is thus possible to find a linear combination

K,...«JP) -Ehi) ~C..aJP) • he® (9)
m 1

which has only one non-vanishing component, this component being
different from zero at the origin.

By multiplying h'ai^s(p) with functions in Q), acting with C2 and

taking linear combinations it is then easy to obtain any Aai. e Q).
We may now define asymptotic fields corresponding to the representation

r for negative as well as positive-frequency solutions of the
Klein-Gordon equation by

Afx(h) BJh), Afx(h*) R2**1 (£*#))* (10)

where A is a positive frequency solution of the Klein-Gordon equation.
Since the vacuum expectation values of products of A ex are those of free
fields, the Aex are free fields.

The above considerations show furthermore that any vector obtained

by applying a polynomial in the A(h), he CD, to the vacuum may be
obtained directly by Haag's limiting procedure. The S-matrix may thus
be constructed from our knowledge of the Wightman functions, it is

obviously unitary and TCP invariant12).

In conclusion I wish to thank both Professor R. Jost and Professor
M. Fierz for interesting discussions and very helpful criticisms.

Appendix

In this appendix, some facts about the Hilbert space § of a field theory
have been collected for the convenience of the reader.

First, we want to point out that it is equivalent to introduce the fields
as 'operator-valued tempered distributions' or as 'operator-valued
distributions' and to assume that the vacuum expectation values are
tempered distributions as is done by Wightman21).
11 H. P. A. 35, 3 (1962)
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Let thus D0 be the linear manifold obtained by applying polynomials
in the A"(cp), cp G CD, to Q. Since also Ax(cp)* is considered as field
operator and is defined on D0, which is assumed to be dense in jrj, it
follows that the operator A"(cp) has a closed extension. The intersection
H0 of the domains of the smallest closed extensions of all Ax(cp) may thus
be strictly bigger than £>„. That this is the case is seen as follows.

The vector
A"iVo)A^(q>x)...A"-(<pn)Q, cp{eCD

is a continuous function of <p0 (x) cpx ® • • • ® cpn considered as an element
of A/t („+])• Extension by continuity allows then to define vectors

f
A(q>) Ü / dx0 dxx dxn cp(x0, xx, ,xn) A*°(x0) A"1(x1) A"n(xn) &

^e^b + i)

and the linear manifold D, spanned by them is contained in H0.
It is also obvious that one may define operators A(<p) on Dx by

A((px) A(tp2) û A(<px (g) tp2) Q and that if 0eDx, A(cp) 0 is a
continuous function S -> §>. This settles our first point.

We remark now that § is necessarily separable. This follows
immediately from the density of Dx in §, the continuity of A (cp) Q and the
fact that X is a separable space*).

We conclude with a remark on the completeness axiom.
We will say that a bounded operator C commutes (weakly) with an

operator A(cp), epe CA ii
(C* 0, A(cp) W) (A(<p)* 0, C W) (1)

for all 0, îr7 in the dense domain of definition of all A (cp). This definition
has the advantage that no assumption has to be made about the density
of D0 or the range of C.

Then Haag formulates the completeness axiom (irreducibility) as

follows11)3) (H): if a bounded operator C commutes with all A(<p), then
C is a multiple of the identity.

We will now show that (H) is a theorem in the frame of the Wightman
axioms including completeness and the existence of a positive smallest
mass in the theory. Considei any operator C satisfying (1) for all A(cp).

It then also satisfies (1) when A(cp) is replaced by A(cp) and 0, ]FeDx.
We may suppose C ÛA= 0, since if CQ 0, C 0 0 for any 0 e Dx and
therefore C 0.

*) Both AD an(l A/ are separable as one may check directly. For A/, this follows
also (see ref. 15), p. 373) from the fact that it is a Fréchet space and a Montel
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We have thus \\C Q\\ p > 0, <C>0 a, |a| ^ q.
Let L (tpx, (jpr) be a linear combination of the A((p) such that

|| (C - L(<p)) Q\ < e, then q s > \ (Q, c* c Q) - (Q, L(<p)* C Q)\.
But we may, by multiplying the <p{ by suitable functions in />-space

obtain a new operator L(ip) such that

L(ip) Q L(<p) ü, Ü L(xp) (ß, L(<p)Q)Q.
Then

pe> \p2-(Q,L(rp)*CQ)\ \p2-(Q,CL(rp)*Q)\

and finally since

we have

\p2- a (Q, L(tp)*Q)\

lim (Û, L(xp) ü) ol

xol* P2, CQ xQ.

From this it follows immediately that C 0 a 0 for any 0 in D, and
C is therefore a multiple of the identity.
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