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Relativistic Thermodynamics III :

Velocity of elastic waves and related problems

by E. C. G. Stueckelberg*)
Universities of Geneva and Lausanne

(10. IV. 62)

Abstract: The equations of motion and the principle of equilibrium determine the
signes of viscosity, heat conductivity, mass, elastic modulus and heat capacity in
terms of the sign of absolute temperature. Furthermore, these thermodynamic
conditions show that light velocity is the upper limit for the velocity of elastic
waves. The equations of motion contain the 2nd time derivative of the velocity of
substance, in perfect analogy to Dirac's theory of the point election. The linear
approximation of the equations is discussed. The equilibrium for a rotating fluid
and for a fluid in a gravistatic field are given. In particular, a method is used (see

annex), which shows that the use of Lagrange Multipliers is valid not only for an
extremum but also for a maximum (or minimum), if the functionals involved are of
the density type.

Introduction and Conclusion

In two previous articles1)2) (to be referred to as I and II, see also Leaf3))
we gave the equations of motion for a fluid in general and special
relativity. The two laws of thermodynamics were stated as covatient equations
of continuity: homogeneous for the symmetric 4-tensor of momentum energy
density da^(x) and for the 4-vector of substance-density j%(x), inhomogeneous,

with a positive définit source i(x), for the 4-vector of entropy-density
fg(x). It was shown that this set of 4 ± 2 equations with a positive définit
entropy source i(x) was possible only in a manifold {x*}, where but one
coordinate was of time like character (thermodynamic signature).
Furthermore the two viscosities rj and f ' had to have the sign of absolute

temperature T, and the heat conductivity x had to be positive définit.
However, in the equations of motion additional state variables occur :

Mass-or enthalpy-density m, heat capacity per unit volume c and the
elastic modulus a. Their signs and the numerical value of the velocity of
elastic waves c« (c2« ajm) are of importance. These questions could not

*) Supported by the Swiss National Research Fund.
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be discussed in I, because their answers follow only, if we add to the 4+2
continuity equations the condition of equilibrium: In a closed system,
entropy increases, if time goes on to the very far absolute future, up to a
maximum. We speak of absolute future, because the continuity equations
are covariant even with respect to time reversal «7». The very far absolute
future at which equilibrium is reached, introduces a time-like 4-vector
into the theory, which we may call the arrow of time.

A-f

m
dcrjy)

sM-5

dcrjyj

Ttyi-0

STj-3

Fig-
Field lines of the entropy density 4-vector ja$(x), and values of the pseudochronous

entropy scalar S[t] for 2 hypersurfaces in an orthochronous frame (x"-}

This arrow of time is essentially the 4-vector of entropydensity AAA) (more
exactly, its projection

fsm(x) (w* we fs) (x) (0.1)

on the 4-velocity wa(x). Figure illustrates the problem: Consider an
hypersurface r(y) 0 with a time like normal. Its hyper-surface element at an
event y, daAy) is a pseudochronous vector*), defined by the scalar 4-volume
element

(do)* V(y) doAy) ôr«(y) > 0

where òra(y) is a time-like pseudo-chronous vector

<V4(y) > 0

(0.2)

(0.3)

*) An u denotes pseudochronous quantities. The exact definition is given
in (1. 10).
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pointing to the relative future (relative means with respect to the frame
{xA}). In the figure r"(y) 0 is later than r'(y) 0 in the frame {x*}.

The pseudochronous covariant surface elements daa(y) have their (+)-
face oriented towards xA t. The entropy S[r], for a given t(v) 0, is
defined by the pseudochronous scalar

S[t] f (dcix fs) (y). (0.4)

7{y) 0

If we look at the same surface 'r('y) f(y) 0*) in a time-reversed frame

'x «T» x : V x' ; 'xi='t= - xi= -t (0.5) *)

we find the entropy

'S['r] f f<#a '/«) ('y) - S[t] (0.6) *)

'r('y) - 0

because the relative orientation of the (orthochromous) 4-vector j'xs(x)

and the pseudochronous 4-vector daa(y) has changed. Thus we have in
our figure

t"
S[t"J - S[t'] /" jÌ4F(a:) »(*) 5-3= + 2>0 (0.7) **)

because r" is later than r' in {^a}, and

'S[V] - 'S['t"] (- 3) - (- 5) + 2 > 0 (0.8)

in {'^a}, because now V is later than V in {'.Ta}. S[t] is an essentially

positive quantity in an orthockronous frame (j*s(0){x) ^ 0***)).
In an orthockronous local rest frame the state function of rest energy-

density 044 u***) is given by

u u [s n] (0.9)

*) A prime to the left 'S, 'daa, 'jas denotes quantities in the transformed
frame {V*} (see § 1).

**) The integral is extended over the region of the world tube between the
2 surfaces r" and t'.

***) Equalities and inequalities > hold only in a specified frame (orthochromous

frame, local geodesic rest frame,
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as a function of two state variables : rest entropy-density

As A s (0.10)

and rest substance-density

]\ n (0.11)

Absolute temperature T and chemical potential fi are defined by

T [s n] us [s n\; jx [s n] un [s n]. (0-12) *)

Heat capacity per unit volume c and elastic modulus a are

c[sn] (T TX) [s n\ (u, w"1) [s n] (0.13)

a [s ri] (s2 uss + 2 s nusnA- n2 un „) [s n]. (0.14)

Thus the signs of the state functions

r-iry^O; r-x|'S0; k^0 (0.15)

(viscosities »7, £' and heat conductivity x) follow from the continuity
equations, while those of rest mass-or enthalpy density m, elastic modulus
a and heat capacity per unit volume c

T~1m^0; T-1a^0; c^0; J"1/** ^ 0 (0.16)

are a consequence of the equilibrium condition.
This condition leads also to the interesting result

0 <c2^ m-1-a^ 1 (0.17)

showing that the velocity of elastic waves c» is smaller or at most equal to

the velocity of light 1). To our knowledge, this result is new: Pauli4)
criticizes the procedure of Herglotz5) and Lamla6) (who impose, from
the condition 'maximum signal velocity =1', an upper limit upon the
elastic modulus a; see also Lichnerowitz7) with the words.

'... the principle of relativity can not make any statements on the
magnitude of the cohesive forces.' He expects, that, at this upper limit
for a, '... the phenomenological equations become incorrect'. We were
therefore rather surprised, that phenomenological thermodynamics leadi,
for stability reasons, to this upper limit (0.17) for a.

The new mathematical problem we were faced with, was the maximum
conditions for the functional

S[...]=S'= maximum (0.18)

Symbols like un are partial derivatives un [s n] du [sn]ldn oi state functions.
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when the functions to be varied were submitted to n functional constraints

G"[...] G'a; ab.. 12... n (0.19)

where G"1 are n constants of integration of the equations of motion.
uIt is well known, that the extremum conditions for S[...] can be found

u
by the method of n Lagrange multipliers Xa: one defines a functional

W[...]=S[...]A-ìaGA-..] (0.20)*)

u
and looks for its extremum. We can show, that the maximum of W[...] is

w
also a sufficient condition for the maximum of S[...]. In the particular
case, where all junctionals are simple volume integrals over densities the

maximum of W[...] is a necessary and sufficient condition. The proof of
this theorem is given in an annex for the case, where but one function
is varied and only one constraint holds. Its generalisation to several
functions and several constraints is easy, but involves a very complicated
notation.

We recall in §1 the, slightly changed, notations of I. In §2 we restate
the 4 + 2 continuity equations of I: only 3 + 2 of them are inpendent.
They correspond to the equations of motion for the 3A-2 state variables:

3-velocity v (x t) entropy density j*s (x t) and substance density j*N (x t).
They are essentially different from the n. r. non relativistic) case,
because 2nd time derivatives of state variables occur.

In § 3 the equilibrium condition is treated for the Lorentz case (see 8)

for a note on this subject) : In equilibrium, the fluid rotates with constant

angular velocity. Due to the 'inertia of heat', the temperature distribution is

T(x) T0(l-v2(x))~1l2. (0.21)

Thus, 'heat is centrifugated', if T~> 0.

In § 4, the linear approximation of the equations of movement is given
and partially discussed. We add 2 remarks to these equations:

1. Not only the equation of heat flow, but also the damped elastic waves
and the flow of transverse momentum allow solutions only for the (absolute)

future. (This particularity holds naturally also in n. r. theory.) Thus, if
the present is known, the (absolute) future can always be predicted. However

no inference can be drawn from the present to the history in the (absolute) past.
We believe that this particularity of the equations is closely related with

*) The Lagrange multipliers A are pseudochronous constants, if the constraints
<-j

refer to orthochronous quantities G" and orthochronous constants A if G" is
pseudochronous.
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the functional character of the transportation phenomena*). It is
interesting to note the analogy of this arrow of time in phenomenological
thermodynamics to the question of time reversal in statistical mecanics (see
10-13l\

2. In the linear equations of motion, the 2nd time derivative appears
in the form :

m0 dtv (x t) X (- (x T)0 d2 + m0 dt) v (x t) (0.22) **)

Thus, if no forces act, an exponential increase (towards the absolute future)
of acceleration may occur, because, on account of (0.15) and (0.16) the
coefficients of dtv and dfv have opposit sign. This is a striking analogy
to Dirac's14) theory of the point electron, if the retarded self-force is
chosen.

Finally, § 5 gives the correct answer***) for the static equilibrium
in a gravitastatic field.

g*ß(*)=g.ß(*)' (°-23)
The relation

T(x) T^(y) fi(x) p-!®) (- gii(y)l- U%))112 (0-24)

holds in this case : In perfect analogy to the 'centrifugation of heat' (0.21),
we may say that 'heat accumulates down-wards' in a gravistatic field.
It is remarkable, that the ratios of absolute temperatures T in (0.21)
and (0.24) are identical with the ratios of periods of an atomic clocks:
T(x) in (0.21) is the period of an atomic clock moving with velocity v(x) ;

The ratio (0.24) corresponds to the red shift, if T(x) is the period of an
atomic clock at x measured in coordinate time t xA.

We add a word, concerning the sign of absolute temperature T (see 8)).

T has the sign of rest-mass-or enthalpy-density m. Thus, if we chose rest
mass to be positive, T is positive. If two systems, in our case two fluids,
are in contact, their T's must be equal. Thus, all possible systems must
have T > 0.

§ 1. Notations

If {x*}, aß 12 n is an w-dimensional differentiable manifold,
general relativity assumes a non singular metric

(*)-«.»(*): det(gj*0. (1.1) ****\

*) i.e. We believe that this one-sidedness of the solution is also true for the
exact eqs. of motion.

**) * means in an orthochronous rest frame. (...)« are the values of the state
functions x, T and m in equilibrium at rest.

***) In I, a mistake has occurred.
****) fl(a/5-/...) is a totaly symmetric and &[ajSy..J a totally antisymmetric

tensor.
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We have shown in II that only the dimensions n 2 and 4 can occur
and that one of the two thermodynamic signatures

signât (gaß) ± (111 - 1) (1.2)

must hold: one signature may change into the other, if we cross a
surface*), where two spatial coordinates change simultaneously their sign.
If we do not discuss such transitions, we may restrict ourselves to the
particular thermodynamic signature (111 — 1). Covariant differentiation.
D„ is defined in the usual wav

Dy-,..M)-(ày-A... + G/p'^-A.

X x

(1.3)

G/Y(x) tf? Gaß.) (x), (1.4)

2 Gaßy(x) (dxgßy - dßgya + dygoiß) (x). (1.5)

As long as we are not including Gödel15) manifolds, we may assume
frames in which 3 coordinates are space-like x {x1}, ik... 123 and
one coordinate time like x* t. In this case, we may introduce at any
specified event x x', local geodesic Lorentz frames

j?u(*') -g44(X i; &,*/»(*') °. X6)

Xß„(*') o; (XX A.A (*') (dy-x...) (*') ¦ (!-7)

Frame transformations are written in the form

Va y>'a(x) ; day>'a(x) A'*AA (1-8)

and tensors transform according to

,a'-".l.J'x) {A\_crlA-ll.xJ(x). (1.9)

If our transformations do not permute space- and time coordinates we

may define pseudochronous tensors16)

#«•••...('*) sig (A\) (A\ ...fr-......) (*), (1.10)

where sig (t) ± 1 (or 0) for t^ 0 (or t 0).
We shall introduce a 4-velocity field wa(x) (time-like vector), normalised

to
(wa wa) (x) - 1. (1.11)

*) This surface is rather to be called a line, on account of the space metric.
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In this case, we may introduce at any specified x', where wx(x) is defined,
a local geodesic rest frame

w(x') {wKx')} 0 ; w*(x') ± 1. (1.12)

The two possibilities + 1 (— 1) are called orthochronous (pseudochronous)
rest frames.

The general frames, whose space-like and time-like coordinates can
be separated, divide into two classes :

f orthc-
1 pseudo-1

w*(x) A. 0 in a | j \ chronous frame (1-13)

In a Lorentz frame, 4-velocity and 3-velocity are related by

w(x) (w4 v) (x t) ; w*(x) ± (1 - v2 (x t) -1'2. (1.14)

The wx(x) - fields defines a family of world-lines xa za(X)

-Jj-^A) ia(A) w«(z(X)), (1.15)

where X is the proper time parameter.
Of any scalar or tensor, we may form the proper time derivative

«••¦•(*) (1«"'1ZW))!W J=KV'-) (*)• X16)

We shall be concerned with the symmetric 4-gradient of the 4-velocity.

2 wa ß(x) (Dawß + Dßwa) (x) 2 w{a ß)(x) (1.17)

and its spatial profection (normal (J_) on wa(x))

2 w«jj» (2w,/i + »,»/i+ Wß X) (*) 2 »huM • (!-18)

Furthermore we need the spatial projection of the metric

em ßAX) (ea ß + w* wß) (*) £(« « x (*) • t1-19)

The irreducible parts of wa * ± are the zero trace tensor

2 «4") ± W (2 ^ x - 4 ga ± <) (*) (1.20)

and the scalar

v9'±{*) »,*(*) (Xwe) W • (L21)
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The symmetric 3-gradient of 3-velocity is defined by

2vik(xt) (divk + dkvi)(xt). (1.22)

In a local geodesic rest frame (1.12) we have the identities

wt(x)^dtv,0c(j; >)=*0, (1.23)

2 wlk±(x) =£ (W4 2 vik) (xt); w*A±l, (1.24)

2»,UW=0. (1.25)

Further we need the spatial projection Ta ± of the 4-gradient of temperature

X
DJ(A dj(x) Ta(x) ; 7; L

(x) (ra + ^ T) (x). (1.26)

§ 2. The Equations of Motion (Continuity Equations)

From the field equations of gravitation follows the continuity equation
and symmetry

(Dß«f>) (x) 0; &aß{x) =&iaß>(x). (2.1)

In n. r. theory, the conservation of inert mass follows from the continuity
equation for momentum as an additional continuity equation, if Galilei
covariance is required.

In Lorenz covariant theory (and therefore also in general relativity), no
such continuity equation follows. In order to have the same number
of state variables, an additional continuity equation

(DJ*A A) 0 (2.2)

has to be postulated. (2.2) expresses a conservation law for substance

N[r]=f(dcij«N)(y) NA (2.3)

T

where N' is a constant of motion.
In special relativity, where Da da, (2.1) leads to 10 conservation laws

for momentum-ebergy {n^j |77, H\ and angular momentum-center of

energy \M" "\ \M, M\

m\x] / (daa 0a") (y) /7'", (2.4/7)
T

M"v[r] M',r\A [ {daa (y"6ar - /0a")) (y) M'"v (2AM)
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(2.1) and (2.2) state the 1st law in differential form. (2.3) and (2.4) state
the 1st law in integral form.

The 2nd law is the differential relation

(DJA-i)A) 0; i(x)^0 (2.5)

(to which we must add the condition of equilibrium, see § 3).

Having 4 + 2 equations of motion (2.1), (2.2) and (2.5), but only 3 + 2

independent state variables v, jis and j%, an identity of the type

(wß(Dß* ß)+T (DJ«S - i) + /,(Dj\) )(x)=0 (2.6)

must exist.
wa(x) is a 4-vector field, T(x) and fi(x) are scalar fields. (2.6) defines

these 6 space-time functions only up to a common, ^-dependent factor.
This factor is determined, up to a sign, if we identify wa(x) with the
4-velocity field, normalised by (1.11).

T and ft turn out to be absolute temperature and chemical potential
in an orthochronous rest frame.

We construct 0aß(x) as a functional of wx(x), T(x), fi(x). The local term
represents a perfect fluid

&f0f(x) (m w« X + gaß p) (x) (2.7)

It depends only on the local values of the 5 state variables, i.e. on wa

and on 2 scalars m and p. Additional terms

0«ß(X) (©-f + e«f + e$ + e-f) (*) (2.8)

depend on the 1st derivatives, more exactly on the spatial projections of the

4-gradients defined in (1.20), (1.21) and (1.26) and imply transportation
phenomena.

Let us consider the perfect fluid term in more detail : We remark that
it is invariant under a reversal of proper time (1.15) (wa —> — w"). This is

due to the fact that, if 0a °
0"o[, the entropy source vanishes identically

because all phenomena are reversible. The equation of motion for wa is

(Dßm ß) (x) (mwß + dßp + wß Da (m w«) )(*)=0. (2.9)

In a local geodesic rest frame (1.12) (1.23), the space part takes the form

(Dß*mti (A (fndtv, + d,p) (xt)=0. (2.10)

Comparison with n.r. hydrodynamics induces us to consider m as rest

mass-density and p as pression. On the other hand we have in such a
frame the expression

0$ m - p u [s n] (2.11)

37 H. P. A. 35, 7/8 (1962)
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for the rest energy-density. We consider u as the density of interior energy,
function of rest entropy density s and rest substance density n. From this
consideration follows that

m uA-p s T A-n/j, (2.12)

is also the rest enthalpy density. Now we consider (2.6) for 0*oß and /as(0)

with i(x) 0. Using (2.11) we find

(wß Dß«ßm) (x) -(ÜA-m Daw«) (x)
(2.13)

-(TDJ«sm + i*DJ«N)(x). j

This identity is satisfied on account of (0.10) and the 2nd equation (2.12),
if we pose

fsm (s w") (*); fV*) (n ">") (*) ¦ (2-14) *)

Thus s and «are equal to the rest densities only in an orthochronous (1.13)
local rest jrame. Therejore T and fi have their true signification only in
orthochronous frames. This is not surprising, because energy H[r] i74[r]
is an (orthochronous) scalar with respect to time reversal, while entropy
u
S[r] is a pseudochronous scalar (see 16)) ; Under time reversal, we have

't=-t; 'H H; 'S=-S. (2.15)

Thus T and fi should be defined as pseudochronous scalars. We have not
used this way, because for general space-time continua (for ex. of the
Gödel15) type) the term pseudo-chronous has no meaning: In the purely
differential relations like (2.6) only orthochronous scalar and tensor fields
can occur.

We shall now give the transportation terms, depending on the two
viscosities!' and rj and on the heat conductivity x in terms of waßx (1.18)

andral (1.26):

&tf){x) -{ri2ut.«/»(Oh x

0f/,(*) -(rg«/<)(*),
%)(x) Kqß + X,f) (x)

(2.16)

*) /"jy is the definitive form. AsiO) however is only the, time-like, projection of

;'us (see (2. 19)) on œ« (see (0. 1)).
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qa is the 4-vector of heat flow

qj\x) - (k (Ta x + X T) (*) qa ± (x) (2.17)

In a local geodesic rest frame, <?4 vanishes and its space part is

q (x t) - (x (grad T + T dtv) (x t) (2.18)

We remark the term proportional to dtv: It may be interpreted as an
'inertia of heat'.

The 4-vector of entropy density is

fs(*) (fsW + /°W (*) Ma + T'1 ?a) (*) (2-19)

and its source

i(x) {T-1n <» le»«|«0> + r-1 f«)2 I

(2.20)
+ T-2 x(Ta±A- X T) (Ta± + X J)) (*) ^ 0. |

The scalar products are positive définit, if only one coordinate is of time
like charakter. Positive definitness of i(x) requires therefore (0.15). We
shall not give the explicit form of the equations of motion, but only their
linear approximations in § 4.

§ 3. The Equilibrium Condition

As it has been stated in the introduction (0.20) (proof see annex), the

maximum of S[...], submitted to the 7 constraints*)

#[...] - H' =0,

(3.1)
/7[...] -77' =0,

M[...] -M' 0,
u w
N[...] -N' =0

is given by the maximum of

¥[...] S[...]+êH[...] - (Ç,n[...]) - (of, M[...])-vN[...] (3.2)

*) M {M'4} M' is not a constraint, because it depends explicitly on t.
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u -*¦ ^*
where {t, f, co and v are Lagrange multipliers. As i(x) 0, we may use
the perfect fluid terms :

S[...]=J (d3V X) (x) ; X sw* Jtm (3.3S)

H[...]= f (dW (m (w*)2 - p)) (x) (3.3H)

y y
/?[...] / (dW m w* w) (x), (3.377)

Af[...] f(dWmw*[x a w]) (x) (3.3M)

Nl-1 - f (W j*s) fô (3.3N)

u
The extremum condition is <3( 'ÌjF[...] 0, where <5(1) is the 1st variation,
linear in the variation of the functions tobe varied. Calculation is easiest,
if we chose w, j* /|(0) and j% as state variables.

The result is :

ÖVY[w( fA j\( )]

(3.4)

/ {d3V [(# (m — a v2) w* v — m w* f ' + a(A, w) v, Sw)

A- (1 + & (ms w* - (w*)-1 ps) - mjg, w))dj*s

+ (Ô (», w* - (w4) -1 pn) - m£', w) - v) ôj\]} (x)

where

?(*) £+[of a*]. (3.5)

The coefficient of òw(x) vanishes, if

§ v(x) C'(x) X+ [cu A x]. (3.6)

Thus the motion at equilibrium is a translation at constant velocity $_1 f,
on which a rotation at constant angular velocity #_1 m is superposed.
Evidently, the fluid is supposed to be limited by a rigid container

xeC(y) 0, whose velocity corresponds to the boundary velocity (v2(y) < 1),
which may, however, be as close to the velocity of light as we like

l-v2(y)=ei; e^+0. (3.7)
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The coefficient of ôjis(x) vanishes (we have eliminated £' by (3.6)), if

T(x) us(x) - iï^w^x) T0(1- v2(x))-^2 (A Toe-1*)), (3.8)

T0= - ê-1 sig(w*) (3.9)

The formula (3.8) corresponds to the equation (368) of Pauli4): Pauli
interprets his formula as a Lorentz transformation of temperature.
According to (3.8), T(x) takes (for T0> 0) arbitrarily high values at
the bounary. This is due to the 'inertia of heat' : 'heat is centrifugated in
a rotating fluid'.

The coefficient of òj% vanishes, if

fi(x) un(x) =ïï~1vwi(x) =fi0(l - v2(x))-V2 (< floe-1**)) (3.10)

fi0 &-1 v sig{w*) (3.11)

At this stage, one has to verify, whether the equations of motion are
satisfied by (3.6), (3.8) and (3.10).

Calculation shows, that waß±(x) and qjx) ?ai(J) vanish. Thus one
is left, as we have postulated, with the equations of motion of the perfect
fluid. These are satisfied by (3.6), (3.8), and (3.10).

Next, we calculate the 2nd variation <3'2>W\_...], bilinear in the functions

to be varied. The condition for a maximum is <5(2i *F[...] :£ 0.

A somewhat lengthy calculation gives the following result. (We have
substituted, after the variation was performed (3.6), (3.8) and (3.10) in
order to eliminate the multipliers) :

(W[...] - rigK) / (dW T- 1 (1 - V2) -1'2) (x))

{[m (gik _ v vk) --a(l -- V2) V' V1 òwi òwk

(1--XX, (àj'sf + 2«, n
àj*s àj% + Ur,n(K'f)

)f total* + (• ..yòw àj'N] (x) A.O.

(3.12)

The variation changes its sign under time reversal, because ¥ is
pseudochronous. We have now to decide on the frame (ortho- or pseudo chron-
ous, w4 > 0 or wi < 0) in which this maximum is reached. We decide,
arbitrarily, that

u * *
S[...]= maximum, if sig(w4) > 0 (3.13)

This defines the orthochronous frames. The contribution due to ôj4Ax)
and ôj^nÇx) is negative définit if a has the sign of T and if c us us ^1 >\ 0

*) if T0 > 0.

**) if ft, > 0.
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(0.16). In order to evaluate the contribution due to dw(x), we introduce,
at x, a local frame v (v, o, o). The condition takes the form

{T-1 [(m - a v2) (1 - v2) (òwx)2 + m ((òw2)2 + (ôw3)2)]} (î)^0. (3.14)

Thus, for (òw2)2 (x), the condition T'1 m^2:0 in (0.16) follows. For
(òwx)2 (x) we find

T-1 (m- av2) ^0. (3.15)

In the limit (3.7) we obtain (multiply (3.15) with the positive définit
factor T m~x v~2 i> 0:

0 (3.16)

i.e. condition (0.17).
From (0.16) and (2.12) follows:

T~1m sA- T-1n/j, ^0. (3.17)

As s and n are independent variables, the condition follows :

s^0; j4s{0)(x) (sw4)(x)>0, (3.18)

the 2nd inequality being valid in an orthochronous frame. Thus the 4-
vector /s(oX) *s the arrow of time. (3.18) may be considered as a rudimentary

form oi Nernst's 3rd law: Entropy is (in an orthochronous frame) a positive

définit quantity.

§ 4. The linear Approximation
We consider, in zeroth approximation, the fluid at rest

i.e.: v(x, t) v0 0 ; w4 (xt) w40 + 1; s(xt)=s0; n(xt)=n0.
All state functions in this static equilibrium will be marked by (...)<,.
Then, we allow an infinitesimal departure from equilibrium:

v (x t) v (x t) — v0; s (x t) — s0; n (x t) — n0

are infinitesimal quantities. Taking but the first order of this approximation,

the equation of motion for v{x t) is:

dßat (x) -> (- (w* x T)0 d2tv + m, dp - (w* x)0 grad ÒJ
* ^-> ^ ^+ grad p — (w4 rj)0(— rot rot v)

- (w4 If + y >?)) grad div «)(**)= 0.

(4.1)
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We can separate the transversal (J_) and longitudinal (||) parts

v vx + »n rot a — grad cp (4.2)

Then the two expression

(-(w4xT)0 d2t + m0dt- (w4 r/)0A) v± (x t) 0 (4.3)

and (we omit the grad sign and explicit p and T in terms of s — s0 and

n-n0):

{[- K x T)0 d2 + m0dt- (w4 (f + ±v))oA] (- cp)

- K « «Jo Ö, (s - s0) - (w4 x usn)0 dt (n - n0) y (4-4)

+ (s uss A- n uns)0 (s - s0) A- (susn + n unn) (n - »0)| (x t) 0

have to vanish separatly.
The equation of motion for s — s0 and n — n0 involve only the

longitudinal part v». They are, in terms of cp:

(4.5)
{àt (s - s0) + (w* A)QAdtcp -s0A<p- (w4 x c-%A (s - s0)

-(w4xT^usn)0A(n-n0)}(xt) 0, j

{ài (n - n0) - n0 Acp} (x t) 0 (4.6)

As mentioned in the introduction (0.20), the 2nd time derivative of v

apears, if x > 0.

We discuss the following particular cases :

/. Heat Flow:

If we put Vu cp 0; n n0 (4.5) reduces to the n. r. equation of
heat flow

(dt-w40b0A) (s-s0) (xt) 0; b xc~1^0. (4.7)

Its general solution is

(s - s0) (x t) f dW(y) Kw(\x-y\, w\ t) (s - s0) (y 0) (4.8)
J

whose the kernel K{b) (\z\,t) satisfies (4.7) (with w4, + 1) and

Km(\z\,0) o(z). (4.9)



584 E. C. G. Stueckelberg H. P. A.

The kernel is, as is well known :

Kw(\z\,t) (2n)~3 f>£éXXms< j

(4 »M"» exp (--"£). j
(4.9)

As was mentioned in the introduction, only solutions for the absolute future
w04 t>\0 exist. Equilibrium is asymptotically reached as w4 t -> + oo.

This was to be expected on account of the condition (3.13). We remark
however, that cp 0, n n0 does not satisfy (4.4). Thus, heat flow is

always connected9) with the

2. Elastic Waves:

We assume x0 0. The wave equation is obtained if we operate with
dt on (4.4) and eliminate dt (s — s0) and dt (n — n0) from (4.5) and (4.6) :

[m0d2-a0A-(w4^ + \-r,))f>Ad^cp(xt) 0. (4.10)

This is exactly the equation of n. r. theory : Undamped waves (f '„ tj0 0)

propagate with the velocity 0 ^ c» ^ 1 (0.15).
In a viscous fluid, the general solution is

(4.11)
cp(xt)= j dW(y) [D(t) (\x-y\,w\t)cp(y0)

+ D(\x-y\,w04t)w\dtcp(y 0)]

where the two kernels D(t) and D satisfy the wave equation and

DU)(\z\,0)=ô(z); ö<7J(t)(|5|,0)=0; (4.12)

DÇz, 0) 0; dtD( | z \, 0) - 6Çz) (4.13)

We give the Fourrier representation of the kernels. They involve two
terms k2 < k2max and k2 > kAmax.

The representation follows from the wave equation in the form

(d?-c\A-w04c\xAdt)cp(xt), (4.14)

with

^=(X(r + ^))e0, (4.15)

^X^XXX-1 (4.16)
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in terms of the following functions of k2

k2<k2max: y(ki)=\c\xk2^0,

co(k2) (c\ k2 - -i- cA t2 k4Y12 ^ 0

Yi(k2) y(k2) (1 T (l - AJL*-1)) -
+ 0

C2 T Ä2 -> + CX)

585

(4.17)

(4.18)

Z>(o(|*|,0 (2;r)-« / ^3Ä2-X (e«'<(*'z»-°">-'"(l + î>co-1) + C.C.)

.0

oo

4- y dAk (y, - yj -1 gX Xy2 e"» ' - yx *"*<)

D(\z\,t)= (2tt)-3

(4.19)

<i3& (2 i co ,-1 (pi(\kr)-<°t)-yt c. c.)

+ / i»A(yi-yi)-!«*<*•') (e"»'-«-"O

(4.20)

On account of (4.18), both kernels exist but for t S: 0. Therefore, in
perfect analogy to the general solution of heat flow, damped waves can
only be predicted for the absolute future w^t^O. (If there is no damping,
D( | z |, t) is the 'Z)°-function' of electrodynamics with c» instead of 1, and
the relation D{t)( \z\,t) dtD( \z\,t) holds).

3. Flow of Transverse momentum:

Equation (4.3), to which of course div v± 0 must be added, can be
discussed without approximation. We consider first the 3 limiting cases.

a) x0 0: This leads to the equation of heat-flow (4.8), with

b rj m-1 S 0. (4.21)

The general solution exists only for the absolute future w04 t Ï2 0.

b) Vo 0: The solution for the acceleration is

dp± (x t) ew'"ßt dp (x 0) (4.22)

ß= (»^T-'^O. (4.23)
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Unless the initial acceleration vanishes, the accelaration increases indefinitly
towards the absolute future w^t>\0 (ß~x ~ IO-24 — 10"27 cm).

This feature is perfectly analogous to the 'run away' solution of
Dirac's14) theory of the point electron (ß~l ~ 10~13 cm).

c) m0 0: This case is of purely theoretical interest, the rest mass of
a fluid being always finite.

Two kernels for

X (x t) f d3V(y) K(±) | x - y \, w* t) v± (y 0) (4.24)

exist. They are, in terms of

<x.2= (yx-1 T-l)0>0, oc^O, (4.25)

K{±)( \z\,t) (27i)-3 f d*k <M21 T a<

(4.26)

n-2(oi2t2A- \z\2)~2(±oit)

#<+> exists only for t^ 0 and iX> only for t ^ 0.

We have of course

K{±)(\z\, ±0) =ó(l). (4.27)

Thus a solution, which exists only in the absolute past w40 ^ 0 t's equally
possible. The apparance of this non thermodynamic solution is the
generalization of the 'run away' solution (4.22).

d) General case: In terms of a and ß the two kernels are

K{±)(\z\,t) (2n)-z f cPkJ&i- A(>")t
> (4_28)

y±(k2) L ß Az i~ ß2 + a2 A2)1'2 -» ± a k -> ± oo (4.29)

We have again the thermodynamic solution and the, unphysical, 'run
away' solution existing only in the absolute past w40 t :£ 0. It is

interesting to write down the equations for small wave vectors | k | :

k2<k2max ^(r,xT)-\m\. (4.30)

The two kernels are

K^(\z\,t)^Qt\(2 7i)~3 I ««*'»Ti'*' (4.31)
o

where b0 is given by (4.21). Thus, the physical solution K^+\ valid only for
t^.0 reduces to the heat flow kernel as in the n. r. case: The upper limit
Ka* g°es to kmax -> + oo, if x T -> 0.
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The unphysical solution if'X valid only for t 5S 0, is the 'run away'
factor exp (ß f) multiplied with the heat flow kernel, in which the
substitution t ->— t has been made.

§ 5. Equilibrium in a Gravistatic Field*)
We consider a field ga Jx) ga Jx) independent of t, and we look for

a stationary solution dt(...) 0 with w'(x) 0. Thus we have

K w«) (x) (gu(w4)2) (x) - 1. (5.1)

Equilibrium requires a vanishing i(x). This implies w^ßx(x) 0 and

(Ta± + wa T) (x) 0. Calculation shows, that wa(x) {0, w4(x)} satisfies
the 1st condition. The 2nd condition gives us the temperature distribution

T(x). The space part of the 2nd condition leads to Ti±(x) djT(x),
because T(x) — 0. Further we have (cf. (1.4) and (1.5))

w,&) (w4 Dtu>,) (x) - K w, G4,) (x) - {(w4)2 \ digu) (x). (5.2)

Thus, on account of (5.1),

(Tix A- wt T) (x) (d{T + (| (g44) -1 digii) J) (x) 0. (5.3)

The solution is (0.24). In order to find fi{x), we use the equation of motion
(space part for wit remembering m s T + n fi and (from (2.12) d{pÇz)

(s djT + ndtfì) (x)) (i(x) 0 has again reduced the problem to the perfect
fluid case). We find, from (2.12) and (5.2) :

ym w t + dtp) (x) [s (Ì (g44)-i (digii) T + dtT)

+ n (Ì (gM) -1 (digu) ft + d{/tj\ (x)=0.
(5.5)

From (5.3) and (5.5), (0.24) follows for pi. The equations of motion for
s and n ave easily verified, if we write them in the form

(s + s Dawa) (n + n D^) s h 0, (5.7)

because D^ w^ waJ vanishes and because the substantial derivatives

of scalars T, (i, h, s, vanish in the static case.

*) The relations in I are not quite correct: They assume a point y, where
Sufy) 1-
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Annex: 2nd Order Variation of Functionals

If F F[f )] is a functional of the function £(x), x {x'}*), the

functional derivative at x F x FX[£ )] is defined by

ÔVF[...]=f(dVôè)(x)Fx[...]. (A.l)
v

In thermodynamics, we deal with fonctionals of the density type :

F[-i f dV(x) f[x, mi f dV(x) f(x). (A. 2)

V V

V is the region of integration and symbolises also the volume

V f dV(x)
v

of the region. f(x) f[x, {(#)] is the density of F. With /'[...]
df[x, i]jdi, /" the functional derivative is

Fx[...]=f'(x). (A.3)

If we look for the maximum of F[...], submitted to a constraint

G\S( )] G (A. 4)

we introduce the particular variation

ò$(x) ài1 const, if x e Vx, (A. 5)

where Vx is a small region of V. According to

<3<1»G[...]= VlGiXi[...]df + J (dVôi) (x) G ,[...] 0, (A. 6)

v
ÒA d^[i( )] is a functional of |(*) in V V - Vx. We write

ÔÏL...] - (Gtl[....])-* j (dVÔÇ) (x) GiX[...]
V'

t (A- 7)

(dvòè)(x)t)\x[...],

introducing the functional derivative f1 x of I1. G i[...] Uj G ,[...] is
the partial derivative ÒGy...]\ÒSA. xx is a point inside Vx (eVx) (mean
value theorem of integration).

*) We omit the * in x x \x'}.
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The 1st variation of F[...] is now

ÖVF[...] Fx oi1 + f (dVOi) (x) Fx

589

(dVÔÇ)(x)(Fx G-\xFx)Gx)=0.
(A-8)-

It has to vanish for an extremum. Thus

Fxl--i (Fx+(G-\1Fx)G:X)[...]=0; xeV (A.9)

is the functional derivative of F in V" V — Vx.
The method of Lagrange multipliers introduces the functional

¥[...] (FA- XG) [.'..] (A. 10)

and looks for the extremum of W with unrestricted variations. Or, for
our particular variation (A. 5), we have

&»W[. ..] (FxA-XGtl) Ò? A- J (dV df) (x)WtX 0. (A. 11)

v
The variation being arbitrary, the value of the multiplier is :

,X=- (G~\xFiX) [...]. (A. 12)

Thus, for the 1st variation, the multiplier method is equivalent to the elimination

method.
We show now, that the condition (5<2) W 5S 0 is sufficient for ô{2)F ^ 0,

if the constraint holds: We form the 2nd functional derivative of F[...].
(A. 9), considered as functional of £(x) in V,

FXy[--i Vxy + iI',;lit\y+(G-2,iGilyF1-G;1lFly)
xG;c+(G-2ilG11F1-G-1|IF11)G;c|1,y

Y xy + V, X1, y + y i yG)x + X ni\J\ v
;

x y e V

(A. 13)

where (A. 12) and the definition of I1 x in (A. 7) have been used. The
2nd variation is therefore

*) The points xx in F x Vx Ft and in G x Vx G] x are in general different,
but are both inside Vx (G Vx).
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&»F J (dV ÔS) (X) J (dV ôi) (y) Fxy
V V

f (dV ôg) (x) f (dV di) (y) Wxy A- 2 f (dV Si) (x)

H. P. A.

V

x^iäXP,,,!«1!

x / (dVôi)(y)Yi.

v
2 J (dV ôi) (x)

V

.] W[...] go.

(A. 14)

The third equality is only ralid for the particalar variation (A.5) (A.7).
However, if <5(2) W[...] < 0 for an arbitrary variation, ó(2,F[...] < 0 results.
Thus ô<-2)W[...] < 0 is a sufficient condition for ó(2)F[...] < 0.

In the particular case, where -F[...] and G[...] (with the density
g(x) g[x, Ì(x)]) are of the form (A.2), we have

¥[...]= / (dVxp) (x) ; v(x) f(x)+ Xg(x) (A. 14)

Therefore

<5<2>F[.

V,ii VlW"(xx)

x y e V. (A. 15)

(dV y"((5f)2) (x) + Vx %p"(xx) (oi1)2 gO. (A. 16)

Now, we take the particular variation

òi(x)
0 *

for x\ \V0; V0eV

from which

Ô? - Fr1 l-^M) or]

(A. 17)

(A. 18)

follows, (x0 is a point inside V0).

For this variation, we have

a»F[...] (n-1 v"W + Fi-vw (Xg-) (<^)2 go,
(A. 19)
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The volumes V0 and Vx are arbitrary and independent of each other. x0
and xx, are therefore two (arbitrary) points e V. Therefore

f(*)gO; xeV (A.20)

is a necessary condition. Thus òmW[...] 0, <5(2)!F[...] g 0 are necessary

and sufficient conditions for <5(1)F[...] 0 and <5(2)F[...] g 0, if
F[...] and G[...] are of the form (A.2).

The method can easily be generalized to the case, where several (n)
constaints (0.18) are imposed, and if several (co) functions Ça(x) (oc/3...
12 co) are to be varied. Higher order variations can also be formed in
the same way. We conclude therefore:

The maximum condition for density functionals with constraints, which
are also density functionals, can be computed by the method of Lagrange
multipliers.
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