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Local Analyticity Properties of the n Particle

Scattering Amplitude

by J. Bros and V. Glaser

CERN, Geneva

and H. Epstein

I.H.E.S., Bures-sur-Yvette

(1. III. 72)

Abstract. The connected part Fc(p) of the scattering amplitude (p, pr\S — V\pr+i, .,pn)
defined on the mass shell p2 m2 and deduced from a local field theory involving only (stable)
particles with strictly positive masses can be represented in a suitable neighbourhood of any physical
point p as a finite sum fc(p) 2?Ft(P) of 'partial amplitudes', each F,(k) analytic in a certain
domain &'. of the complex mass shell h2 m\. The mentioned real neighbourhood lies on the
boundary of each $f',. The above decomposition may fail to hold only at points p where any two
incoming or any two outgoing four-momenta become parallel (thresholds). The number N as well as
the shape of the domains Sf\ depend on the number n and on the real neighbourhood considered. For
a generic configuration p the intersection of the domains &¦, is empty. When this does not happen,
Ft (p) is the boundary value of a single analytic function. This is illustrated on the case of the five-
point function, where it is shown that when D det(prps) > m\m\m\, D being the Gram
determinant of the scalar products of the three outgoing momenta pi,p2,Pt, tne scattering amplitude is
the boundary value of a single analytic function. It is also indicated on the same example how these
local results may be improved ; one finds in the equal mass case mr m that the five-point scattering
amplitude is the boundary value of a single analytic function whenever M > 4,8m, M being the total
centre-of-mass energy of the three outgoing momenta.

1. Introduction

In his paper [1], Professor Markus Fierz gave, as early as in 1950, a very lucid
analysis of the causal character of the time-ordered amplitudes appearing in the calculation

of S matrix elements in field theory. As our contribution to the celebration of his
60th anniversary, we present in this paper an analysis of the analytic structure of the
general scattering amplitude involving n particles in a complex neighbourhood of its
physical points. We feel that our treatment of the problem is close in spirit—though
unfortunately not in style—to the argumentation used in the paper [1] ; all the proofs
are based solely on the causal factorization and spectral properties of a time-ordered
amplitude.

While the analytic properties of scattering amplitudes involving four particles
have been extensively studied and are nowadays well understood and well founded on
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the general principles of local field theory1), nothing comparable has been achieved for
the case m>52).

In the present paper, the following will be shown : the connected part Fc (p) of the
scattering amplitude :

(px.. .pv\s - i\pv+,.. .pnyc S4 (ia - i p\ Fe(p)
V» v+\ I

defined on the mass shell p (pu ¦ p„), px + • • ¦ —pn 0, pj m\, pt e V+, and
deduced from a local field theory involving only (stable) particles with strictly positive
masses can be represented in a suitable neighbourhood of any point p as a finite sum

Fc(P) ÏFi(p) (D)

of 'partial amplitudes', each Ft (p) being the boundary value (in the sense of distributions)

of a function Ft(k), k=p + iq, analytic in a certain domainZF, of the complex
mass shell kj m2. The mentioned real neighbourhood lies on the boundary of each

^j. The decomposition (D) fails to hold only at points^» where any two incoming or any
two outgoing momenta pt become parallel (thresholds). The number N as well as the
shape of the domains 3F

% depend on the number n and in general also on the real
neighbourhood considered. Only when n — v 2 or v 2 is the number N independent
of the position of the point p on the mass shell, but also in the general case a decomposition

(D) can be found—with some loss of information—with an N independent of p and

satisfying all the quoted conditions. For a generic configuration^ the intersection of the
corresponding domains ^t will be empty :

i=l

Only when this does not happen will the scattering amplitude be a boundary value of a
single analytic function. That these different possibilities do indeed occur is illustrated
on examples in section 4. If v 2, n — v 2 we have N 1, so that the scattering amplitude

is everywhere (except possibly at the threshold) the boundary value of a single
analytic function. This result for the four-point function (though obtained by a different
method) has been known for a long time [6]. In the case of the five-point function (v 3,
n — v 2) we have N 3. In this case the decomposition (D) has been proved some time
ago by two of the authors [7]. The method used in [7] is geometrically much more
cumbersome, compared to the simple method of this paper, but permits to obtain better
local results due to a better exploitation of causality. Therefore the case of the five-point
function is discussed in detail in section 4, in order to indicate how the results of this
paper could be improved.

The fact that the scattering amplitude is not always the boundary value of a single
analytic function but is of the form (D) in the neighbourhood of some Landau
singularities was recognized independently in perturbation theory in [8], [9] and [10]. This
fact proves the necessity of a decomposition of the type (D), at least in the neighbourhood

of some physical points.

1 For a survey of the methods used and results obtained exclusively on the basis of general prin¬
ciples, compare the review articles [2]-[4].

2) As a most recent summary of the results so far obtained—again on the basis of general prin¬
ciples—cf. [5].
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The main mathematical tool used in this paper is the so-called generalized edge-of-
the-wedge theorem3). It has been proved only recently in full generality in [13] and [14]
by the use of a generalization of the ordinary Fourier transform, which was inspired by
the paper [9]. On the other hand, the physical problem itself is very much related to the
proof of the L.S.Z. reduction formulae achieved some years ago by Hepp [2], [15]. The
problem can be formulated as follows: what special continuity properties does the
(amputed and truncated) off-mass-shell time-ordered amplitude tc(p) enjoy thanks to
locality and spectrum of the underlying field theory, so that its restriction to the mass
shell p2 m\, i 1, n, be meaningful. This is a non-trivial problem since the
restriction of a general distribution to a lower dimensional manifold is of course meaningless.

In the next section we shall first solve this problem again, but in a form which makes
the passage to the ambient complex space in section 3 quite transparent and natural.
Thus the decomposition (D) can be also viewed as a generalization and a sharper
formulation of the well-known results of Hepp.

2. Continuity Properties of tc Near the Mass Shell

The L.S.Z. formalism gives, as is well known, the following formal prescription for
the computation of S matrix elements

(pu.. .,pv\s-i\-pv+l,.. .,-pnyc n <Pt\A(0)\oy fi (o\A(o)\-Pjy
1 j=v+l

84(|a)^)U PyeV+(m),pv+l,...,pneV_(m). (1)

For the sake of simplicity, we shall consider here the usual field theory of a single Bose

self-interacting field A (x) describing scalar particles of strictly positive mass m. Here

V+ (m) -V_ (m) {J> e R4 :p0 +V]>2 + m2}

is the positive mass hyperboloid. tc (p) is the connected (=truncated) vacuum expectation

value of the 'amputated' time-ordered product of n fields:

S4 (| Pi\ l (P) =jtc (x)e"*dx, x=(x. xn)e U4n,

p-(Pi,---,Pn)eU4„, px Zptxt, dx<=d4x,...d4xn (2)
i

with

tc(x) (Q,T(x)Q)c (I(x)yc,
T(x) =KXi... KXn T(A (x,) ...A (xA), KX=E\X- m2. (3)

In (2) the energy momentum conservation has been explicitly put in evidence, so that
tc (p) is to be considered as a distribution defined only on the subspace 2"_£. 0 of R4„.

3) See the Theorems 3 and 3' of section 3. Theorem 3 has been first formulated by A. Martineau
in the context of the theory of hyperfunctions by Sato [11]. A special case of this theorem,
sufficient for the treatment of the five-point function, was proved in [7]. The authors are very
much indebted to A. Martineau, B. Malgrange and J. Lascoux for drawing their attention to this
theorem years ago at the Strasbourg meetings. Our special thanks are due to Stora [12], who
was the first to insist on the importance of decompositions of the type (D) for field theory.
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If we start from the usual Wightman axioms for the field A (x), it is still unknown
whether sharp time-ordered products can be constructed. In that case (cf., for example,
[2] or [3]) the field operator A (x) should be replaced by its mean value over a finite space-
time region, more precisely

A (x) -*. A9 (x) - J A (x - y)d*y, cp e 0(R4) (4)

with
supp<p cz Z) {ïeR4:\x0\ + \x\ <a}

for some finite a > 0. The T product of n operators Av can then be constructed with the
help of the usual step functions

T(AV (*,) ...Av (*„)) 2 0(xO. - xo2). 0(*o - xon)

¦A9 (xnl)A9 (x„2) ...A, (xnn), 6(t) l(|*i +1) (5)

and with such a T product the formal expression (1) is still expected to hold. Care must
be only taken to choose cp so that the matrix element <_/>|^4„ (0) |0> between the vacuum
and a one-particle state is ^0. It follows then from causality and the spectral condition
that (p\A9(0)\0y is an entire analytic function of p on the complex mass hyperboloid
p2 m2 (cf., for example, [16]). The same remarks apply also to the case of a Haag-
Araki theory : choose any (bounded) operator A in the algebra stf(D)oi local observables
belonging to the space-time region D defined by (4) for some finite a such that the
(entire) function (p \A 10> ^ 0 ; define the field operator A (x) by A (x) eiPxA e-'Px, where
e~'Px is the space-time translation operator. Then the formal recipe (1) is still expected
to hold.

The problem we want to discuss in this section is the following : tc (p) is a tempered
distribution e Sf'(U4in_u) (also in the Haag-Araki case although tc(x) may then be
chosen to be a bounded continuous function in x space) and the restriction of a distribution

to a manifold, such as the mass shell as required by equation (1), has in general no
sense. How do the properties of causality and spectrum of the function tc (x) following
from the general principles make this restriction nevertheless possible? The proof of the
restrictability to the mass-shell was given by Hepp [2], [15], who showed that tc(p)
had continuity properties such that (1) can be defined as a distribution on the mass shell
in the set of three-vectors p., ...,_?„, p° ±Vp2 + m2, i 1, n, provided it is
applied to test function cp(ß,,. p~n) e ^(R3n) which vanish in a neighbourhood of any
two parallel momenta.

We shall now rederive this result in a form more adapted for the passage to the
complex reserved for the next section.

Let us first state the properties of the time-ordered amplitude tc on which all the
considerations of this paper will be based.

1. Causality

(T(X)yc <r(/,)T(i2) • • • T(i„)yc a [/,] > [/j
for all r <s,r, s 1,2,. .,p (C)

where X (Jr-i A- and IrC\ Is= 0 for r ^ s. Here some explanation of the notation
is needed: X ={1,2,. .,«} is the set of indices numbering the different space-time
points of x (x,, x2,. xn) e R4„, Is is any subset of X and by an abuse of notation,
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we write T(xti,. .,x,) T(I) for the amputated T product of pc operators, where
J- {h> H, ¦ ¦ •> j/j} c -<*• Consequently, we write indifferently: T(x) T(X).

m u{*.}cR4 (6)

is the collection of the single points {xt}, i e /, considered as a subset of the Minkowski
space U4. Finally, for two sets A, B c U4

A>Bmea.nsAC\{B + V_}=0, (7)

i.e., the set A does not intersect the 'past causal shadow' of the set B. In the case of a
'sharp' T product condition (C) is simply the well-known factorization property of a T
product in case the argument X can be decomposed into several clusters in a mutually
acausal position. In the Wightman or Haag-Araki case, when the T product is given by
equation (5), the condition (C) still holds, provided we define for any I c X :

[I] U D(xt) (8)
tel

with

D(xt) {x e U4:\x° - x°t\ + |î-â?,| <«}
[cf., equation (4)]. We shall denote the expression (8) by [I]a and consider (6) as a limiting
case for a 0: [/] [I]0.

The condition (C) is thefull causality condition for the n point Green's function. In
the following we shall exploit only the special case of the decomposition into two
clusters

(T(X)yc (T(x\i)T(i)yc (C)

when [X\l]a > [I]A).

2. Invariance under space-time translations

tc (x) and all the distributions appearing in (C) are supposed to be invariant under
(x,,.. x„) -> (x.+a,. x„ + a) for all a e R4. All these distributions depend therefore

onn — 1 four-vectors, e.g., £P xr — xn, r 1,. n — 1. In order not to break the
symmetry under permutations, we shall not hesitate to express this fact by saying
simply tc s «^"(R4(B_i)) without specifying a co-ordinate system in R4(„_d- The
Fourier transform of such a distribution, say tc, will be also an element of Sf'(U4(n_iy).
Again, for the sake of symmetry, it will be considered as a function of n four vectors
p,, p„ linked by the relation p. + ••¦ +p„ 0 without specification of a
coordinate system, always in the sense of formula (2), in which invariance under translations

has been taken into account. The subspace/), + • • • + p„ 0 of U4n will be simply
called R4(„_i). Note that the causality condition is translationally invariant.

3. The spectral condition

The Fourier transform of tcj (T(X\I) T(I)yc has the following support property:
supp?c/ c {p e R^-n-.pm e V., (Mxu)} (Sp)

4) Usually (C) is stated only for the time components of the points xt in a special Lorentz frame.
That the local commutativity of the fields really impies (C) for the T product defined by (5)

requires an (easy) proof (e.g., by induction on the number of arguments).
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if I ^ 0 and X. Here

Pi-2 ft (9)
lei

and V+ (Mf) denotes the following closed sets in R4 :

V+ (Mj) V+ (2m) ={pe R4:p°> Vp2 + Am2} if \I\ 1 or n- 1

F+ (M,) F+ (w, 2m) F+ (w) (J V+ (2m) if 1 < |/| < n - 1 (10)

where |/| denotes the number of elements in the set /.
The condition (Sp) is obtained by 'inserting intermediary states' between the

operators T(X\I) and T(I) and taking into account the assumed spectral structure of
the energy momentum operator of the theory. Because of the truncation, the vacuum
state does not contribute and because of the amputation, the one-particle state does not
contribute when T(I) or T(X\I) consist of single field operators. Here again the
complete spectral condition would involve the Fourier transform of the general 'cluster'
(T(I.) T(Ip)yc, but for our purposes (Sp) will suffice.

The list of our assumptions being complete, take any point p in momentum space
R4(„_1). Fot any such point and any proper subset I of X, we will have eitherp, e V+(M,)
or pIeV_(Mj)=-V+(MI) or pIeC(V+(MI) \jV_(M,)). More precisely, let
0*(X) denote the set of proper subsets of X {1,. .,«} and define, given p —

(p.,. .,pn) e R^n.D, the following three subsets of 0**(X) :

CUT {let?* (X) :px e C(F+ (Mt) (J F_ (Af,))}

Sf± {IeP*(X):p1eV±(MI)}. (11)

In the definition of Sf'+ either the upper or the lower sign holds throughout. The
collections of sets Jf, £f+ and Sf'_ have the following properties

cfr\ASfJrDSf_=0>*(X), x n ^+ sr+ n sr_ 0 (12a)

I e X o X\I e X (12b)

/ e 6f+ o X\I e Sf_ (12c)

These properties are an immediate consequence oi pr+px,, px 0, of V+(M,)
-V_(Mj) and of F+ (M,) + F+ (M}) a F+ (MK) for any IJ,K <= X. The last relation
entails also the following two properties

{Iii2eS/'±,I.rtI2= 0,I.UI2^X} =>{I,ÜI2eSf±} (12d)

{IU2e£f±,I. UI2 X,I,r\I2^ 0} =>{7,n/2ey±} (12e)

the sign 4- or the sign — holding throughout, which we mention for the sake of
completeness. Let us call the collection (uf, Sf+, £f'_) determined by a pointy, in the manner
just described, a hypercell5). As a matter of fact, a hypercell is already completely
determined by S*+ (or Sr°_) alone in view of the properties (12a)-(12c).

To a hypercell, we attach an open set ßj_-,y+
in momentum space as follows :

ß^,^+ {P 6 R4(B_,) -pj £ C(F+ (M,) U V_ (M,)) for all

I e 3f,pt e CV_ (M,) for all / e^+} (13)

5) The name 'cell' is reserved for a very similar collection of subsets of the set X attached to the
definition of a generalized retarded function as it will be discussed in section 4.
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where CA denotes the complement of A in R4. Every point p e R4(„_d is in an open set

^jt,^+ determined uniquely by that point, and there is obviously a finite number of
sets QJf,»'+ covering the whole of R4(n_i).

Now, given a hypercell (x~,SfA, the set £?_*-,_^+ was constructed in such a manner
that the Fourier transform of (T(X\I)T(I)y'c vanishes for all J e JfU Sf+ when
p e Qx-,y+ as a consequence of (Sp') :

tCJ(P)=0 (14)

for allp e Qjr^+ and all / e JfU Sf+. If we define then for any / e &*(X) a 'retarded
amplitude' r, by the formula:

r,(x) (T(X)yc- (T(X\I)T(I)yc (15)

the following relation will hold for its Fourier transform :

l(P) r,(p) (16)

for all

peQsr,^ and/e-5fU^+.
Because of (C) r, has the support property

r, (x) 0 in UttJ - {x e R4(B_U: [X\I]a > [/]„} (17)

Note that UaI is an open set.
The relations (16) and (17) are fundamental for the rest. In order to derive

continuity properties of tc (p), we multiply both sides of (16) by any infinitely differentiable
function H(p) with compact support contained in Qjr^ • Equation (16) becomes

*c(P)&(P)=h(P)&(P) (16')

valid in the whole space R4(n_1) for all / 6 Jf U £f+ and any aef(fi//t).
We can choose à so that x(p) 1 in any fixed compact set contained in &rr,&>+-

By Fourier transformation, (16') becomes:

(tc*x)(x) (rI*0r)(x) (16")

in R4n for all / e Jf U S*+.
We now apply to r, * a the following lemma, first used by Hepp [15].

Lemma 1. If a tempered distribution F e ^"(Rjy) vanishes in an open cone C <= R^,
then for any fixed test function a. e Sf(UN) the infinitely differentiable function F * a 6 0^
is of fast decrease in any closed cone r such that r\{x0} cz C, x0 being the common apex of T
and C. We denote this property shortly by: F * a e S"(C).

Since F * a is by general theorems always Cœ and of at most polynomial increase
together with all its derivatives at infinity, the lemma is a statement about the
asymptotic behaviour at infinity; along any direction contained in C, (F * ac)(x) and all
its derivatives vanish at infinity faster than any inverse power of the distance from
any fixed point in RN. The proof is an immediate consequence of the very definition
(F * oc) (x) (F(y), ct(x — v)> of the convolution and of the definition of the support
of a distribution : when x runs away to infinity within any closed cone _T of the
lemma, the distance of the point x to the support of F tends uniformly to zero.
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We choose F rt in the above lemma and want to show that

r*oceSf(UI) (18)

with U[ U0 j for any à e Sf (U.4,n_iy). In the case of a 'sharp' T product we have just
to put C Uj in Lemma 1, since then a 0 in (17) and Ut is an open cone in R4(n_D
with its apex at the origin, as it immediately follows from the definitions (6) and (7).
If a > 0, it is enough to establish the relation

d(x, CUaJ) > d(x, CUj) - ca (19)

where d(x,. is the Euclidean distance of an arbitrary point x e R4(B_i) to the complement

of Ua j, respectively UIt and c is a constant independent of x. Equation (19) says
namely that the distance of a point x to the support of r, tends to infinity whenever
d(x,CUi) tends to infinity, which is precisely what is needed to establish (18). Equation
(19) can be inferred from the following very useful explicit representation of the complement

of Uaj in R4(n_i)

supprr c CUa 7 (J {x, - Xj + 2ea e F+}. (20)
16/

JeX\I

Here e (1,0,0,0) is the unit timelike vector and V+ is the closed forward light cone.
Equation (20) becomes immediately clear if one draws a two-dimensional picture of the
definitions (7) and (8). The proof of (19) is then left to the reader.

The relations (16") and (18) imply

XleJTt) ST+ I
(21)

ii&e^(Qx-^+).
If we define, following Hepp [2], the essential support of a C^ function as the

complement of the open cone in which the function and all its derivatives vanish faster than
any inverse power of the distance from the origin in the sense of Lemma 1, we can
rewrite (21), using the formula (20) with a 0, in the form

ess supp tc* a (] U {xt — x.eVA (22)
IeXu$r*+ leiJeX\I

iläG9(Qx^A-
The important feature of this formula is the fact that the essential support of tc * cc

is a finite union of convex proper cones6). To exhibit this feature more clearly, let us
define :

Definition: A choice is a map / -> h(I) which associates to every proper subset

/ of X an element h(I) of {1, ...,«} contained in I:h(I) e I.

We stick to the following definitions: a cone C in mN is a set satisfying pC C for all p > 0;
x0 + C is a cone with apex at the point x0 ; a proper cone is a cone C whose closure C does not
contain any linear subspace of RK except the origin.
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In other words, a choice picks out of every subset / an element contained in it. Of
course there are a finite number of different choices if n is finite7). Let h, h' be two choices.
Then (22) can be written as follows :

ess supp tc* ex fi U{%)-%W/)^+}
JejTu y+n.n

U, Pi {xha,-H'ix\,)eV+}^UC„H' (23)

where the union runs independently over the pair of all possible choices h and h'.
[Since with / the class of subsets Cff contains also X\I according to (12b), we were forced
to introduce two independent choices in order to be able to interchange the intersection
and the union.] The cones Chh, being a finite intersection of the closed convex cones :

KtJ {xe R4<1_1) :*, - *, e V+} (24)

are themselves convex and closed. The proof that the cones Chh, are also proper is left
for the Appendix.

The decomposition (23) of the essential support into the convex cones Chh, is far
from unique : as a more detailed investigation shows, some cones of the family are
contained in other members of the family. By denoting with Cr,r=l,...,N, the uniquely
determined maximal elements with respect to the partial order of inclusion, we shall
write formula (23) in the form

N
ess supp tc * ex (J Cr. (25)

r l

At the end of this section we shall determine an upper bound for the cones Cr,
when the hypercell (K, Sf+) is such that Q-r y intersects the mass shell, while in section
4 they will be explicitly calculated for some special cases.

Given the decomposition (25), tc * cc can be represented as a sum

N
tc * «¦ 2 /'S* + Se> SUPP/r.e C Cr,e> ?=l,. ,N,

r l

«ccrie,«y(v„) (26)

where the functions/, e are infinitely differentiable, of at most polynomial increase at
infinity and have their support in the cones Cre, while s€ is in Sf. Here Cr €

is any open
cone containing Cr\{0}. Crf should be thought of as a 'e/2 neighbourhood' of the cone Cr
in the sense just indicated. sf has its support outside, say, an 'c/2 neighbourhood' of
(J*Cr and is equal to tc * a. outside (JiCr{, and hence of fast decrease at infinity. It is
clear that (26) can be achieved by an appropriate partition of unity (some care is needed
near the origin). The decomposition (26) is of course not unique: apart from the e

neighbourhood question, Cr Ô Cs will be in general # 0.

') There are precisely

r,(£)=*(2"-D
different choices.
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After a Fourier transformation, (26) becomes:

l(P)=2fr,AP)+s*(p) (27)
r-1

for all p e K <=¦ Qx, y ¦

Here we have taken advantage of the fact that a can be chosen such that &(p) 1

in any compact set K contained in Q^.se ¦ Equation (27) is the main result of this
section. For, by the Laplace transform theorem, the fT( (p) are boundary values of
functions

fr.Ak), k=p + iq

analytic in the tubes

rrjl {p + *q e R40-»: q e cr,j (28)

where

Crtt {qen4,„_u:qx>0 for all x e Crf} (29)

are the^dual cones of Cr €8), while se e Sf(U4in_u). The cones Cr f are contained in the
cones Cr, the dual cones of C„ but can be chosen arbitrarily close to them. Since
Cr convex hull of Cr — Cr if Cr is convex, we see why the decomposition into convex
cones is so important. A decomposition into non-convex cones would mean a loss of
information in momentum space.

Let us concentrate now on points p near the mass shell. Denote by

J(' {k=(ku. .,k„):k, + ¦¦¦ +kn 0,k]i=m2,i l,. .,»} (30)

the complex mass shell manifold. It is an analytic manifold. One of the main results of
this paper is that all the tubes 0~r f for 'e small enough' have a non-empty intersection
with JXC near all its real points :

^ {p (p1,...,pn):pl + ---+pn~0,p2 m2,i=l,...,n} (31)

provided no two incoming and no two outgoing momenta ^>, are mutually parallel. For
that purpose it is of course enough to investigate F, D ^c, iTT having as basis the
cone Cr, since &~tJC can be chosen arbitrarily close to 3~r and both are open.

Let us first clarify that the above purely geometrical statement implies restricti-
bility to the mass shell. *élc intersects ^"r>e near a real point pe~# means more precisely
the following: given a (real) point p e J( we consider the A(n — 1) — n complex dimensional

tangent plane ^"(p) to ^#c at p given by:

^c(^)=^ l + ^6C4(n_1):i|i 0,A<ri 0,i=l,...,«j (32)

and require that y,, (10* (p) # 0. 3~, € fl 0*"(p) is a 3« — 4 dimensional tube having
as basis the cone

Cr,<C\&(P)*0 with 0>(p) lqeR4,n_lyiql O,ptqt O,i~l,...,n}
(33)

In the above formula qx q,x2 + ¦ ¦ • + qnxn and q, + ¦ ¦ • +- qn 0. It is at this point that the
properness of the cones Cr is crucial : Cr is open and non-empty if and only if Cr is proper.



Vol. 45, 1972 Local Analyticity Properties of the n Particle Scattering Amplitude 159

Clearly if (33) holds at given point p, the same will be true for all the points in a
sufficiently small real neighbourhood u)(p) oip. Condition (33) implies that^"r f) Jt° is

non-empty, has cc(p) QtJt as boundary points and has the local structure of a tube
there. Under these conditions the restriction/, t (k)j^Kc of the analytic function/r€ (k)
to dlc will be analytic near the considered real points and we can define the restriction
of the distribution /re (p) to the mass shell as

fr,AP)Uœ-^ fr,AP + iq)U. (34)

aeCr.e

Although the notation is somewhat sloppy, the precise meaning of (34) is provided by a

slight generalization of the following two well-known theorems (see, e.g., [17]):

Theorem 1. Let the tempered distribution t e Sf'(RN) have its support contained in a
cone C. Then its Laplace-Fourier transform t(k) J elkxt(x)dNx, k p + iq e CN, is
analytic in the tube 0~ — RN + iC and is bounded there by

,~ (1 + 1*1)"

with L,M,N some positive constants, \p\ the Euclidean norm in RN and d(q,dC) the

Euclidean distance of the point q to the boundary of C.

What matters for us it that t(k) does not increase faster than an inverse power
of the distance to the boundary.

Theorem 2. Let F(k), k=p + iq eCNbe analytic in the local tube Sf? Q + iB, where Q
is an open set in RN and B C (\ Be, C being an open cone in RN and B( the open
ball \q\ <€. If in ££', F satisfies the bound of Theorem 1 with C replaced by B( the limit

lim f F(p + iq)p(p)d*p (F, p>
9
«er

exists for every test function cp e 3>(Q) and every closed cone r such that r\{0} c C and
defines a continuous linear functional in Q)'(Q).

Moreover, let e be any vector contained in the cone C and choose the co-ordinate system in
Cjv so that k p + iq=(pn + iq0 (k,e),p + iq). Then

lim \F(p'n + iq0,p)f(po-p'o)dpo
qo-*+0 J

exist for every f(p0) e@(\p0\ <a), a sufficiently small, and every p e _Qa {(po,P) e^:
(po ± a,p) e ¦&)}¦ The limit thus defined is infinitely differentiable for all p e Qa and is a
linear functional in f continuous in the topology of 3l(\pr,\ < a).

The second part of this theorem says that the limiting distribution F(p) if regularized

in only one direction contained in the cone C becomes infinitely differentiable in all
variables.

These two theorems guarantee the restrictibility of/rf to ^# in a neighbourhood of

any peJl provided Cr lA0>(p) =£ 0 : due to Theorem lfti(k)jJ(c will locally fulfil the
conditions of Theorom 2. Actually, a slight generalization of Theorem 2 is needed here
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since dfc is not a linear space, but the problem is easily settled by introducing appropriate

local co-ordinates.
Thus, provided Cr 0.0>(p) j^ 0 for all r, the restrictibility to the mass shell has

been re-obtained, since the last term s€ in the decomposition (30) is Cœ. This is at the
same time a refinement of the Hepp result : depending on the geometry of the situation,
the smearing out of the Green's function only along a few directions contained in dl is
needed in order to obtain a function infinitely differentiable in all the variables. Thus for
example, if for a given p e .-# it turns out that 0>(p) Dr'-i Q ¥= 0 only one regulariza-
tion along a direction contained in this intersection will suffice. That such configurations
do indeed occur in the many-particle case will be illustrated in section 4. They
correspond to situations where the scattering amplitude is the boundary value of a single
analytic function.

In the above proof we could have avoided any reference to analyticity. Instead of
Theorems 1 and 2, we could use a slight modification of a simple theorem by H. Borchers
(see [2], p. 180). In view of what follows, we choose, however, the more complicated way
over Theorems 1 and 2.

It is clear that if the C°° function se in the decomposition (30) could be shown to be

analytic in a complex neighbourhood of the real points considered, formula (D) of the
Introduction would be proved. In a nutshell, this is the object of the next section.

We still owe the proof of the following:

Lemma 2. The tangent plane 0(p) (33) to the mass shell intersects any of the cones Cr

provided no pair of incoming and no pair of outgoing four-momenta are parallel.

In order to prove this lemma, we make some estimates on the essential support of
tc when p belongs to one of the regions Cix,?* attached to the point p (p,, pn)
when p e JK For that purpose, let us introduce the following notations : let X^
{1,2, v}, _Y2 ={„4-1,1/4-2, ...,«} so that X. UI2 X {1, n). Let /
(il,i2,. ip) denote the ordered sequence of p distinct elements ir e X, while the same
letter I is reserved for the corresponding set I {ix,. ip} <= X and |/| p is the number

of elements in /. Let now T,f, R,S be four ordered sequences such that I,J <= X, and
R,S c X2, I 0 J 0, RHS= 0, \I\ l/l > 0 (and) \R\ |S| > 0. Then we claim
that the essential support of tc is contained in the union of the following closed, convex
and pointed cones :

C?,J,Jt,?;M' ix (*i. • • ¦>*») :*i, =*„.•• '*«_>= xi*>

*,. -*!,.¦¦ •• xr, *,t : *.»<„ - x. e V+ ior all/ e X2 (35)

U [X,\(I UJ)];xk-xtww e F+ for all k eX, U [X2\(R US)]}.

Here h and h' are two 'choices' : h(l) takes its value in the set {1,.... p}, h'(k) in the set

{1,. .,$;/-(»„.. .,iP),J=(Ji,.. .,jP), & - (ru. ¦ .,rq),S=(s, sA,p>\,q>\.
In other words, the cone (35) can be described as follows : there are p pairs of points in
X, and q pairs of points in X2 which coincide ; each point in X2 (Xt) and each 'singleton'
in Xt (X2) is in the closed past (future) of at least one coinciding pair in X, (X2). In
order to obtain a covering of the essential support, it is necessary to take the union of
the cones (35) when I,J,R,S,h and h' run over all the possible allowed values.

The above assertion is easy to prove. Consider the following space time configura-
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tion : suppose there is a single four-vector in X,, say x,,i&X,, which is 'maximal' with
respect to the rest of X., i.e., for which

{x,} >[Xt\{i}] (36)

That means that in x. + V+ there is at most a group of space time points X'2<=-X2. In
this configuration tc will 'factorize' as follows

*c=<r({;}UXi)r(rest)>c. (37)

But the Fourier transform of the right-hand side vanishes in ß_r,^+ since ^(()ur. ^
V+ (Am) ; it is even 4Af+ when X2 ^ 0. Therefore the configuration (36) is outside the
essential support of tc and all the 'maximal' elements of X, have to be at least 'double
points'. By reversing the future and the past, we conclude that in the essential support
of tc all the 'minimal' elements of X2 have to coincide at least in pairs. Similarly, we see
that any x,, I e X2, must contain at least a point eX, in its closed future cone since
otherwise we would have the factorization

tc (T(X'2)T(X\X'2)yc with leX'2<=X2. (38)

Again the right-hand side of (38) has vanishing Fourier transform in ßjr.y because of
Px'2 e V-¦ The same reasoning shows that any xk, keX,, must contain at least an x,,
i e X2, in its closed past shadow. By combining these four conditions, we
conclude that any point of esssupp tc is contained in at least one of the cones (35).
Remark that (35) includes also the cases where more than just pairs of points coincide :

F+ contains also the origin!9) Remark also that the union of the cones (35) represents
in general only an upper bound of the essential support. In the proof of (35) we have
used only the fact that {i} e Cff for i 1,..., n, I e Sf+ioxlc- X, and |/| > 1,1 e SfAor
I<zzX2 and | J| > 1, {i} \AI$Sf+ for {i} <= X. and / c x2, and finally {i} \AI^Sf_ for
{i} <=¦ X2 and / e Sf+. This fact can be formulated also in the following form : Equation
(35) is a decomposition into convex cones of the essential support of tc attached to the
open set :

®ji =*{Pe ^4(n-ii-Pt < 4w2 for i 1,. ..,n; pt e CV(m, 2m)

for all IczX.,\I\>l;pre CF+ (m, 2m) for all J «= X2, \I\>1;
p,i}yjIeCV+(m,2m) for all ieX.,I<^X2, \I\ >1;

p{i)UIeCV_(m,2m) for all ieX2,I<=-X., \I\ > 1}. (39)

We have Ji c QM and Qx,y+ c &ji f°r all X,Sf+ such that JlT) Qx,y+ # 0 • The
choice of the ßyy+ will in general depend on the position oiptJt and this more precise

information will result: in general in a further splitting of the cones (35) into smaller
subcones. Only in the case \X2\ 2 or \X, | 2, as shown in the last section, does (35)
represent the best possible result.

We are now in a position to prove Lemma 2. Since, as we have just discussed, each
C, is contained in some C^, where se' — (I,J;R,S;h,h'), it is enough to show that

') Strictly speaking, the above argument is valid only in the case a 0. When a > 0, replace in the
configurations considered (x,, xa) by p(x,, xn), p > 0. When p is sufficiently big, the
factorizations (37) and (38) will be valid, which is all that is needed in the computation of the
essential support.
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^(P)^C^^ 0 for all se. [Notice that CrcC^ implies C«,cCr.] We shall use the
following geometrical

Lemma 3. Let C a proper convex closed cone in RN and C its dual in RN with respect
to the non-degenerate bilinear form px, p e RN, x e RN :

C {peRN:px>0 for all x e C\{0}}

Then the open convex cone C intersects the linear manifold SP c RN if and only if
#nc {oj

where SP is the dual of 0> defined by

0 {xeRN:px O for all p e 0}.

This lemma is a consequence of theJHahn-Banach theorem : if 0 H C {0} then
there exists a linearJormp0x such that SP cz{x:p0x 0}andp0x > 0 for all x in C\{0},
which means 0 D C =£ 0 since p0 #0 belongs, by the definition of duals, both to
# 0 and to C. On the other hand, if0 O C ^ {0} there exists a Xnjk 0 belonging to both
0 and C and the set s/ {p eRN :px0 0} contains evidently 0 SP, but is not
contained in C, which means SP D C — 0, q.e.d.

All we have to do now is to compute 0(p) and to show that 0(p) D C^ {0}. An
elementary calculation gives

{x (x,. .,xn):x, — Xj Xtpt — Xjpj for all i <j,

i,j =l,...,n and all (A,,. A„) e R„} (40)

For any x e 0* (A C^ we must have :

xt-Xj Xtpi-XjPJ 0

for any coinciding pair {i,j} cz X. or X2, which implies Af Ay 0 since no two four-
vectors in Xx or X2 are supposed to be parallel. If / does not belong to one of the pairs in
(35) then it is 'sandwiched' between two pairs:

xt Xj, x,-x, -\.p. e F+, x,-xt X,p, e F+, xT xs

But this is possible only if A( 0 also. Hence 0(p) (~l C^ {0} and Lemma 2 is proved.

3. Analyticity Properties of % Near the Mass Shell

In this section we want to prove the announced generalization of the decomposition
(27).

We shall proceed as follows : due to the support property (20) of the amplitude rt
we can represent this amplitude in the form

'/ - 2 f'j with/u 6 ^'(R4(1,_,)), supp//, C K?j
lei

JeX\I

{xeR4{n_.yXl-Xj + 2eaeV+}. (41)
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If rt were a bounded, or more generally, a measurable function, this decomposition
could be trivially obtained by a partition of unity into appropriate step functions. Since
we are dealing with distributions, we have to make appeal to a well-known theorem by
Lojasiewicz (cf., [18]) which says that any (tempered) distribution T having its support
in the closed set A A, U A2 can be written in the form T T. + T2, where the
(tempered) distributions T, 2 have their support in the sets A, 2 provided these sets
meet some very mild conditions, which are certainly satisfied in our case.

Now, although thejdisplaced) cones KtJ are not proper cones—they are of the
form R4 x • • • x R4 x (V+ — 2ea) if we choose £r x, — x}, r — 1, n, r =£j, as
indépendant co-ordinates in R4(„_d—the Fourier transforms of/^ are never the less

boundary values of functions analytic in lower dimensional tubes : the integral

Ji'j(P) J/Ä(fle".«.+-+"«*<+-+"A«i*f-i)f (42)

can obviously be extended to complex values k, of the variable^, provided Im&j e V+.
Thus (42) is the boundary value of a function/^ (p,,..., k,,..., p„) analytic in Imkt e V+
and distribution valued with respect to the rest of the variables. A more precise formulation

of this statement is rather obvious and it is also clear that with appropriate
changes Theorems 1 and 2, quoted in the previous section, will apply to this slightly
more general situation (cf., [3]). With an abuse of language, we shall simply say that the
f\j are boundary values of functions analytic in the 'flat' tubes

ftJ {k (*„. .,kn) :k. + ¦ ¦ ¦ + kn 0, Im£ e Ku), i *j, (43)

with

Ku {q-qi + ¦¦¦ +q„ 0;qr 0, r^i,j; qi=-qJeVJr)
Thus relation (16) becomes

h(P)= 2 fiAP) for Pz&ycs? andaU/ejnj«^+ (16a)
lei ' *

jeX\I

which trivially implies the set of equations

2 fu(P)- 2 ffj(P)=0 for peQx^+ and all IJeX U ^+ (44)
tel iejjeX\I jeX\J

to which we apply the fundamental theorem :

Theorem 3. The generalized edge-of-the-wedge theorem (local version): let ft(k),
i =1, I be I functions analytic in the 'localized tubes'

yBt,s {k=p + iq e CN:p eS, q e J5,}, i l,...,l
where S is the unit ball {p e RN: \p\ < 1}, \p\ the Euclidean norm in UN, and B, the star-
shaped set ('basis') :

Bt {qeRN:0<\q\ <r, (ai) < 1, œ q/\q\, if r, (o>) ^0, \q\ =0 if rt(a>) =0}
(see the comments below). Let the boundary values

lim ft(p + iq)=ft(p), peS, i=l,...,l«-»o
teB,
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exist in the sense of distributions Ç$'(S) (cf., Theorem 2) and satisfy the identity:

2fi(P)=0, peS (45)
i
2

Then there exists a real constant X, 0 < A < 1, depending only on N, and 1(1 — 1) /2 functions
f,j(k) satisfying

fu -fjt, hj -V-.., n (46)

analytic in the tubes 0~„Bth„s, where

BtJ conv (Bt U Bj)

is the convex envelope of the set B, U Bjt and such that

fi(k) ifii(k), »-1....,/, Je/^aA/,,,, (47)

Moreover, the boundary values

Km fu(P + iq)=ftj(P), peXS
q-*0

qeABij

exist in the sense ofdistribution S>' (XS), so that in this sense (47) is valid also for k p e AS.

In case the unit ball S is replaced by the whole of RN the localized tubes 0~BS
(localized in S) become ordinary tubes with basis B, and Theorem 3 (with A 1) can be

proved rather trivially by studying the essential support of the Fourier transforms of
the functions ft(p + iq) with respect to the variable^) (cf., [11]). Notice that XS is the
homothetic sphere \p\ < A and similarly for the other sets. The functions rt (a>) defined
on the unit sphere \q\ 1 have to be such that B, is either an open set in RN (rt is then
semicontinuous from below on all of \q\ 1) or an open set in a lower dimensional linear
subspace R„or R„ (the case of a localized 'flat' tube; rt has to be semicontinuous from
below in R„ D {\q\ 1} and 0 otherwise). If inf^ (cu) > 0 the point q 0 has to be added
to the basis B,. The origin q 0 is always a boundary point of Bt. In our application
the bases Bt will be to start with the truncated cones :

KfJ KlJC\{\q\<l}, (48)

where Ku are the 'flat' cones (43) and jt^ | is the Euclidean norm in some arbitrarily
chosen co-ordinate system in R4(„_i), e.g.,

i?i2=zW

with

N2=2(?ri)2-
M-0

Notice that by a real translation and a change of scale, the ball S can be replaced by the
ball p0 + bS with centre at p0 and radius b provided the bases Bt are replaced also by
bBt. The fact that the functions /, might be analytic beyond the ball bS in purely
imaginary directions, as is the case with (44), gets typically lost in the above theorem.
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Also the contraction of the domain due to the scale factor A is unavoidable in the above
theorem10). A global version of this theorem will be discussed later.

The case / 2 of the above theorem is the ordinary edge-of-the-wedge theorem
([3] or [19]), the subcase of two opposed cones B, Ct, C, —C2 goes back to N. N.
Bogoliubov and co-workers (for a survey and references, cf., [3] or [2]). As to the general
case, see the text and footnotes in the Introduction. The global version of this theorem
given in [11] and [13] will be explained later (Theorem 3').

In order to apply Theorem 3 to the identity (44), take any fixedp0 e ß*-..^ take a
b > 0 such that the sphere bS + p0 c Q-r,<f fix any pair of indices I ^J and rewrite the
relation (44) in the form :

1 f!(P)-Ifi(P) if,(P) o (49)
reAi seAj 1

for all p ep0 + bS.

Here r and s are a shorthand notation for the pair of indices ij, At and A} are the
sets over which they run. We then evidently have:/{ (k), respectively// (k) analytic in
pn + b$~kt s, so that (47) becomes:

f!= ,2 ?" + 2 /",-//=- 2 f" + 2 7" (so)
r'eAj s'eAj r'eA, s'eAj

where the functions/^ are analytic in Xb0~Kr.KT s + p0 and antisymmetric in the pair
of indices rr' and ss'. The antisymmetry in the other two combinations of indices is
taken care of by the — sign in the second part of (50). Here A • B is a shorthand notation
for conv(^4 U B). This antisymmetry entails

2 f' (P) 2 fi (P) 2 ?" (P) I (P) in Po + AAS.
reA, seAj reA,

seAj

By fixing a third index K ^ I,J we reapply Theorem 3 to the identity

IfZip)- 2 ft (P) =0 in p0+XbS
teAK

and after v — 1 steps, v being the number of elements in JT U Sf+, we arrive at the
representation :

l(P) I?r.-r,(P) in Po + X'-HS (51)

where the sum runs over all r e A lt, i'¦ 1,. v and where the/r. ,...„__ (p) are boundary
values of functions/, ,...,rv(k) analytic in

po + X"-lb0-KT....Kj,S.
rl rv

Here we have used the fact that (XA) ¦ (XB) X(A ¦ B). Note also that the formation of
convex envelopes is an associative and commutative operation. Using the notation of
equation (23), (51) can be written as follows:

I (P) 2 A*' (P) - P in Po + A""1 bS, (52)

10) The optimal value of X is unknown to the authors.
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?hh> (k) analytic in

Po + A""1 &T,

where

Bhh',S

Bhh=conv\ U KliI)h.,xxlA. (53)

Now, if in the last formula, we replaced the truncated cone KJ, (48), by the untruncated
cone (43), we would evidently get Bhh, Chh,, where Chh, is the dual of the cone Chh,

(23) of last section (the intersection goes over into convex union by duality!). We claim
therefore that (53) is of the form :

Bhhl=Chh,nA (54)

where A is a certain open convex neighbourhood of the origin in R4(„_1). Property (54)
can be inferred from the following explicit representation of Bhh, :

B*iAl-(?i... •><?„):?.= 2 6f">yaXI)1i«i).»-«M)P«/).r«\f).*-l n\
'

leXi)<f+ '

where e" 4-1 for i r, —1 for i s, =0 for i ^ r,s, where the rjrs are four vectors
varying independently over VI V+ D {|<?| < 1} and prs are the parameters of convex
completion: prs > 0 and 2iphh, 1").

As it was pointed out in the discussion after formula (23), we will in general have
Chh'^- ôi,«'. f°r certain pairs of the family of cones in the decomposition (52). Denoting
by C„ r 1,. N, the set of minimal elements with respect to the partial order of
inclusion in this family, formula (52) can be conveniently rewritten (in general in a non-
unique way) in a form analogous to the decomposition (27). Thus, in view of Lemma 2,

we have proved :

Theorem 4 (local version) : given anyp0 e &%¦ y there exists a complex neighbourhood
Jf (pn) of the real point p0 such that

tc(P)=Ifr (P) for pzjf (pn) f] R4(.-i c û r .-r+ (55)
r=l

where thefr(p) are boundary values in the sense of distributions in S>' (R4(n_i)r\ Af(p0)), of
functions fr(k) analytic in the localized tubes r\ 0', Vt Ar(p0),r, {k=p + iq:qeCr},
r 1, N. Furthermore, if p0 e *4( D Q^.s1 zs suc^ ^a^ no Pa^r of incoming and no

pair of outgoing momenta are mutually parallel, 0~\ H rJt'c =£ 0 for r 1, N and the

restriction oftc to the mass shell in R4(n_i > 0 Af (p0) is well defined in the sense of Theorem 2.

Let us now describe briefly the global version of Theorems 3 and 4. For details, the
reader is referred to the paper [13]. In order to study the analyticity properties of a
distribution f(p) e Sf' (RN) in a complex neighbourhood of an open set _Q <= RN it is very

Formula (54) needs a proof since conv{(_4,n C() U (_42 OC2)} is in general not of the form
A3 n conv{C, 0 C2}if Cli2 are any two cones and A,, 1, 2, 3 convex neighbourhoods of the
origin.
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convenient, as first suggested in the paper [9], to investigate its generalized Fourier
transform

f(x,Xn)=^e-lpx-xo^f(p)dNp (56)

where cp is an auxiliary function having the following properties :

a) <p(k), k=p + iqe CN, is analytic in a complex neighbourhood AT of Q e RN, the
closure of Q in RN, and satisfies there cp(k) cp(k).

b) The set of real points 0 < <p(p) < 1 is equal to the open set _Q, which is supposed to
be bounded.

c) The origin p 0 belongs to _Q and is a critical point for cp (\/cp(0) 0) ; moreover,
it is assumed that <p has no other critical points inside _Q so that the set of level
surfaces cp(p) =c (0 < c < 1) is topologically equivalent to the set of nested
spheres with equations^2 2fpj c ; in particular cp(p) 0 implies_£ 0.

Thus the domains _Q considered are limited to open bounded sets containing the
origin given by the equation 0 < <p(p) < 1 for some cp satisfying the above conditions.
But any bounded domain homeomorphic to a sphere can be approximated arbitrarily
closely by such an _Q. The simplest example (sufficient for the proof of Theorems 3 and 4),
is the choice cp(p) =p2, corresponding to the unit sphere _Q {\p\ < 1}.

In order to give the integral (56) a meaning, it is supposed that /has its support
contained in A^ Ct RN [outside of this set <p(p) is undefined]. For x0 0, (56) reduces to
the usual Fourier integral of the function/. Moreover, f(x,x0) satisfies the equation:

fe+*('s|*^-° (57)

which for <p=p2 reduces to the heat equation. Ttmsf(x,xQ) will be uniquely determined
by its 'initial value' f(x, 0). Now, if in Qf is the boundary value of a function analytic in
a tube (or, more generally, in a flat tube), the part of the integral (56) extending over Q
can be deformed into the complex and will result in exponential decrease properties of
f(x,Xn) in directions within RN x R+ outside a certain essential support determined by
the behaviour of Re(-ikx — x0cp(k)) — qx — x0Recp(p + iq) over the deformed integration

contour. The domains of analyticity, which play the same role with respect to the
generalized Fourier transform (56) as the ordinary tubes do with respect to the ordinary
Fourier transform, are the local tubes TB(f, with basis B described as follows12).

Let B be a bounded star-shaped set in an auxiliary N dimensional space UN given
by the inequalities :

B {$eRN:0<\i\<r(u)<rAw) iir{œ)>0, |£|=0
i£rH-0, o>«£/|£|}. (58)

B is required to have exactly the same properties as the sets Bt introduced in Theorem
4, except that the upper bound 1 is replaced by the strictly positive bounded function

r$ (a>) defined uniquely in terms of the 'localizing function' cp as described in detail in [13].
Given B, consider the set <_fB$ of points k p + iq e CN in the domain of analyticity of
cp(k) such that:

\q\+r(cM)[Red.(p + iq)-l]<0
2) These domains are different in character from the localized tubes used in Theorems 3 and 4.
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We notice that the open set Q always belongs to êB^ [\q\ =0 implies <p(p) < 1 since we
suppose r(co) ^ 0]. If the connected component of êB$ which contains Q is bounded and
has a compact closure inside the domain of analyticity of cp, we define the local tube Tbq
as just that component of ê, more precisely

&Btj, conn. comp, of {p + iq e C^:0 < \q\ < r(a>)[l — Recp(p + iq)]

if r(a>) > 0, \q\ 0 if r(œ) 0, u> ql\q\}. (59)

The only real points which belong to the closure of TB^ are those of _Q and this is why one
calls cp a 'localizing function' in the open set Q. If B is an open set containing the origin—
i.e., infr(w) >0—we drop the condition \q\ >0 in the definition (59), so that then

ß=7V
In order to better visualize the domain TB^ let us write q \q\-a> and resolve for w

&ndp g Q fixed the inequality appearing in (59) with respect to \q\. The local tube TB^
is expected to be of the form

rH {P + iq eCN:peu,0< \q\ < R(a>,p) if R(u>,p) > 0,

\q\=0UR(co,p)=0,œ qj\q\}. (59a)

Indeed, when r(w) is small enough, it is easily seen that R(a>,p) F(m,p,r(a>)) where
F(u>,p,r) is a continuous function of p eQ,a>e {|oj| 1} and r, increasing in r such that
r>0 implies F(a>,p,r) >0 for all p eQ and F(co,p,0) =0. The upper bound r^(w)
such that this condition be satisfied for all r < r^ (co) and a fixed cu is precisely the function

r^(o>) appearing in the definition (58) of B. [For a more precise definition, cf.,
Ref. [13], equation (6).] F(p,co,r) will tend to 0 whenp approaches the boundary of _Q.

This is all illustrated by the case <p=P2, where, as it is easily computed

(l-p2)r
r+(u>)=A_,F(u>,p,r) ,\p\<l,r<\-. (60)

l + Vl-4r2(l-^>2)

Thus^"B^ can be best visualized as a tube localized in _Q whose (bounded) basis depends
on the position of the real point p in Q.

Now, if/(^>) is the boundary value of a function f(k) analytic in a local tube^"B^,
the generalized Fourier transform f(x,x0) can be shown to have its essential support
contained in the convex cone SB with apex at the origin in (x,x0) space, whose section
x0 1 is the (closed convex) polar set B of the set B defined by :

B {x e RN:xÇ + 1 > 0 for all f e B).
This is the analogue of the notion of essential support of tempered distributions
discussed in section 2. [The essential support SB can be also defined directly as follows :

SB {(x,x0) e RN x R+ : x£ + x0 > 0 for all £ e B}.] f(x,x0), which is an entire function in
x for each fixed x0 due to the compact region of integration in (56), satisfies in addition
some more precise growth properties at infinity for x0 fixed, which are due to the
behaviour of f(k) near the boundary oi0~B^, i.e., to the distribution character oif(p), for
which the reader is referred to [13] and [14]. The converse is also true: by using a
generalization of the Parseval formula, it is shown that every solution of the equation
(57) having its essential support in a convex cone SB with section B and the mentioned
growth properties, is the generalized Fourier transform of a distribution/^), which is
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the boundary value of a function analytic in 0~B$ with B Bl3).f(p) is defined only
modulo a distribution vanishing in Q.

Since Ë conv B Ê, one finds as a first consequence of the above theory that
every function analytic in a local tube 0~B$ can be analytically continued to the local
tube 0~fy, which is, as can be inferred from the inverse generalized Fourier formula, a
natural domain of holomorphy. This is a generalization of the usual tube theorem.
Almost as immediate a consequence is the

Theorem 3'. The generalized edge-of-the-wedge theorem (global version) : let the
distributions f,(p), i—l,...,l having their support in Af\~\ RN satisfy the identity

ifi(p)=o

Let in Q the ft (p) be the boundary values of functions /, (k) analytic in local tubes 0~B j,.
Then there exist 1(1— V)j2 functions f,j(k) =—fJt(k), i,j 1, I, analytic in the local
tubes 0~Bij<i, with B,j conv (B, U Bf) such that

/•(*) £/«(*). kerBi+, i l,...,l (61)

TheftJ have boundary valuesf,j (p) in the sense ofdistributions extendable to all RN, so that
(61) is valid also for k=p e RN.

Theorem 3 is a simple corollary of Theorem 3'. To show it, take cp=p2, observe that
the function F (60) attached to this <p satisfies the following inequalities.

(l-p2)-z<F(œ,p,r)<(l-p2)r for all \to\ \,p eS,0<r <£.

According to the last part of this inequality we certainly have^"+fl|^ c_f8| s where Bt
a.nd0~Bi s are the sets defined in Theorem 3, while the first part of the inequality implies
A^Bj.s ^riBl^ if 0 < A < V2 - 1. Thus Theorem 3 with A y/2 - 1 follows.

It is also clear now how a generalization of Theorem 4 is to be achieved. Take any
point pn e Qjf, &>+ and any open set _Q with localizing function <p such that
p0 + Q€Qrr,»-+. Take BiJ KiJC)Bi, where B^ {q e R4(n_o:0< \q\ <^(o>),
œ ql\q\) and Ku are the flat cones (43) and where \q\ is a Euclidean norm in R4(n_D as

explained after formula (48). It follows then from the previous definitions that the local
tubes 0~BiJ4, will be contained in the flat tubesrt] (43). Thus Theorem 3' implies

Theorem 4' (semi-global version) : let the bounded open setp0 + Q with localizing function

<p be compactly contained in Q-r, y ¦ Then there exist functionsj (k) analytic in the

open local tubes 0Bhh-j, with basis

^~conv{j£U^Sw/M,wU)

13) In [13] only the case of infinitely differentiable functions f(p) and open B's has been treated,
while the case of distributions and flat B's has been worked out in [14].
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such that the boundary valuesf (p) exist in the sense of distributions in 2>'(Q) and satisfy

tc(P)~If„H'(P), P™PoAQ. (62)
Aft'

Here the indices hh' run independently over all the choices as in equation (52). The sets B,j
were introduced above. Furthermore, if a point p e u#C\ Q^ y is such that no pair of
incoming and outgoing momenta are mutually parallel, then Jféc D 0B ¦$ =£ 0 within
every sufficiently small neighbourhood of that point.

The decomposition (62) can be again recast into the form (55) of Theorem 4 since
B,czB2 obviously implies rB^czrBj4>.

The advantage of Theorems 3' and 4' over the corresponding Theorems 3 and 4 is
obvious : they allow the computation of rather big domains of analyticity of the
functions/, in the decomposition (55). In the immediate neighbourhood of a given real point,
these domains coincide, however, exactly with the corresponding domains given by
Theorems 3 and 4. This is clearly implied by what has been said in connection with the
representation (59a) of a local tube. Notice also that the decompositions of Theorem 4

are attached to bounded subsets po + Q of Qx.sc Qjt~,sf itself being unbounded (it is
invariant under real Lorentz transformations!) is not of this form. This is why we call
Theorem 4' the semi-global version of Theorem 4. It is of course hoped that an appropriate

extension of the theory of the generalized Fourier transformation will permit to
construct a decomposition (55) valid all over Qx.se ¦ At this point we remind again the
reader that only part of the causality of the theory [cf., conditions (C) and (C) of section
2] has been used so far. As it will be indicated in the next section on the example of the
five-point function, better local results can be expected from a better exploitation of
the causality condition.

Theorem 3' allows to answer the question about the uniqueness of a decomposition
(62). Suppose we have two sets of functions f„ respectively,/,', r =1,. N such that

l(P)=Ifr(P) Ifr(P), pinPo + n, (63)
1 1

fr(k) a.ndfj.(k) analytic in^"Br^, r =1, N. Equation (63) implies that

i(fi-fr)(P)-0
1

and Theorem 3' tells us then that

f'r(k)=fr(k)+Ifrs(k)

where the functions/rs are analytic in the local tubes0~Brs$, Brs conv (Br U Bs). Only
when _V 1, i.e., when tc is itself the boundary value of a single analytic function, is the
decomposition unique by a well-known theorem on analytic continuation. Theorem 3'
permits also to answer the problem of 'gluing together' decompositions of tc attached to
two different real regions p0+Q and p'0 + Q' having a non-empty intersection : only
when N 1 are the functions /, and J't pertaining to these two regions, necessarily
analytic continuations of each other, as the reader may easily verify himself.
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Thus we have proved the decomposition (D) announced in the Introduction. We
just have to set

FAP)=l(P)U Fr(k)=fAh)ljr.
rr^rr\\jne or rBAr\jec,

where the restriction of tc to the real mass shell has to be understood in the sense of
Theorem 2.

4. Examples and Comments

In the process two particles -> (n — 2) particles, the essential support attached
to the scattering amplitude (p., p„_2\S — 1|—p„_2, —p„y can be completely specified

independently of the particular values of the incoming and outgoing momenta.
Indeed, the collection of subsets Sf+ (section 2) consist always of precisely the following
subsets :

Sf+ {Ie0* (X) :I c X., \I\ > 1}

where X, {1 ; 2; ; n - 2}, X2 {n - 1 ; n) and X X, U X2 {1 ; 2; ; «}.
According to (12), the collection Sf_ consists of the complementary subsets X\I where
I e Sf+, while all the other subsets of X belong to the collection X. In order to see this,
let us first remark that obviously ^,€7+(2m) when \I\ > 1 and I<^X,, while
px\j —pi £ V_(2m). It is also clear that the subsets I {i}, z 1, 2,. n, consisting
of single elements, belong to the collection X since p2 m2 < Am2. According to property

(12a) the subsets I of length |7| n — 1 also belong to X. What remains to be
verified is that all the subsets of the form 7 {n - 1} U X\ and P {n} UX".= X\I,
where X'.,X". <= X,,X\ U X". Xx nndX\,X'2 # 0 belong to X. Now for such an I we
obviously have p, $ V'_ and pv $ V'_. But from p, + pv 0 we conclude pj < 0,
pj, < 0, which proves our assertion.

From the above we conclude that the cones (35) represent the best possible result
in the case considered. The sequences R and S consist, or course, of the single points
(n — 1) and («), so that the essential support is the union of the cones

Cr,7,n-{* (xx, ¦ ¦ -,xn):xh xh xip xip; %„_, xn;

x,-x„e V+ for all ieX.; x,hw -x,eV+ for all / e X. \(I U /)} (64)

with I (iu .,i„),J (;',,. .,;„), h taking its value in {1,. .,p}.
As an illustration of the general theory, we will discuss in more detail the simplest

cases n 4 and n 5. For n A we will rediscover part of well-known results, while the
case n 5 will illustrate several claims made in the previous sections.

The four-point function

According to formula (64) the essential support of tc relevant for the evaluation of

^i^S — 1| —pi,—p4y consists of the single cone

C12 ={*-(*„.. .,x4) : xx x2, Xi x4, Xi-x4e V+}. (65)

Its dual cone is given by

C,2 {P (Pi Pa) ¦Pi + ---+P4 0,pi+p2e V+} (66)
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as it is easily computed by noticing that "^XpiX, (px + p2,xx — x4) when x e C12 and
p\ + • • • +p4 0. Therefore the amplitude tc is the boundary value of a single function
analytic in the localized tube

rin {k=p + iq:peQi2,qeCi2(AA(p)}
where

Ql2 Qx,y+={p-P2<M2,i=l 4;(^,4-^)2<M2sand

# m2s for (r,s) (2,3) or (3,1); px +p2 e CF_(m12,M12)} (67)

and A (p) is an open convex set containing the origin and depending onp e Qn- For the
sake of completeness, we have considered the general case of particles with different
masses mr > 0, r 1, 4, to which evidently our theory, mutatis mutandis, applies
also. ml denotes the (positive) discrete mass in the channel I, while Mt is the threshold
mass of the continuum.

Let us verify explicitly that the complex mass shell k2 m2. i 1,. 4,Jntersects
r\2 in the neighbourhood of the real points ^={p\<2 e V+(niii2),pi4 £ V_(m34)}.
For that purpose, it is sufficient, as we have seen earlier, to verify that the real tangent
plane to ^# at a given point p

&(P) {q-Ptqi -0, * 1 4, 2 qt - 0} (68)

intersects C12. In other words, one has to show that there exist non-trivial solutions of
the system (68) such that qx + q2 —q3—q4 e V+. But this is always trivially possible,
provided the two four-vector couplespx,p2 and_63,^>4 are not parallel, i.e., provided we
are away from the thresholds. When we approach the threshold, the intersection in
question will, however, shrink to nothing.

On the other hand, it is known ([20], [21]) that the envelope of holomorphy of the
n point amplitude is automatically invariant under complex Lorentz transformations.
Therefore the analyticity region 0~\2 just computed will automatically extend to

r\2 U A r\2 s {k (*,,. k4) : Im(ki + k2)2 a Ims > 0} f) Jf (69)
AeJ^+.O

where ^is a complex open set containing the real region Ql2. The last assertion in (69)
follows easily from the fact that the extended tube in one four-vector k is the whole of
C4 minus the cut k2 p > 0. Thus we reobtain an old result [6] : in a complex neighbourhood

of the real mass shell ^# the only singularity of the four-point function is the s

cut (remember that ^Kcz Qx,9> that ^f is closed and Qx <? open Therefore also at
the threshold the scattering amplitude is the boundary value of an analytic function.

It is instructive to indicate explicitly how these stronger results are due to an
exploitation of the full causality condition (C). Instead of the 'retarded' linear
combinations rj (T(X)yc — (T(I')T(I)y, (18), one can introduce the generalized retarded
functions

r<,(X) (T(X)yc + 2 H""1 2 <T(Ji)T(J2) ¦ ¦ ¦ T(Jv)yc, n \X\, (70)
"=2 l,.---,lveKv<f

where the inner sum runs over the following 'chain' K£- of proper subsets JrczX:
J i U U/„ X, JjC\Jk= 0 for all ;>*, J} # 0 for all / 1, v, and
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/, £ Sf' /, U U/, £ Sf' for all r < v -1. Here Sf and Sf' are 'cells', i.e., collections

of proper subsets of X similar to the couple of 'hypercells' 0'+ and 0'_ introduced
earlier and defined as follows : consider the n dimensional real space R„ consisting of
w-tuples (sx,s2,. s„) and in it the n — 1 dimensional hyperplane 2«-i :si + s2 + ' ' ' +
s„ 0. The hyperplanes s, 2_S/S_ 0,7 £ 0* (X) divide 2„-i into a certain number of
conical polyhedra ('geometrical cells') defined by st > 0 or <0 for all I e 0* (X). A (set
theoretical) cell is the collection of the 7 <= X such that s, > 0 in a geometrical cell, while
the 'opposed cell' 0" consists of all 7 c X such that s, < 0. Evidently 0" consists of the
complementary sets in 0* and every 7 £ 0* (X) belongs either to S" or to Sf". S" and 0"
enjoy the properties (12c)-(12e) of the couple ^+ and 0'_ of section 3 and correspond
to the special case X= 0 of a hypercell.

From the causality property (C) follows the support property

*>(*)= 0 if [I]„<[X\I]a and Ie£f. (71)

It can be seen that the support of ry is a cone Cy, in general non-convex, whose convex
closure is ^.pointed cone (displaced away from the origin if a ^ 0). The dual cone of Cy is
given by '4)

4=t> (Pi, ¦ ¦ -,P„) ¦ 2 Pt 0,P, £ V+ for all 7 £ Sf}. (72)

Therefore the Fourier transform ry(p)oiry is the boundary value (in the sense of
tempered distributions) of a function ry (k) analytic in the tn\>e0~#> having as basis cone
Cy:

0~se {k=p + iq:qeCy}. (73)

The proof of (71) and (72) is surprisingly cumbersome and lengthy for such a simple
geometrical problem, and is contained in an unpublished paper by two of the authors
[22] '5). What is also important to us is the coincidence of tc and ry in certain portions of
momentum space. In analogy with (19), it namely follows from the definition (70) and
the spectral condition :

ry(P)=tc(P)iotpeQy (74)

where Qy [cf., the definition (16) of Q-x.sr ] is the following open set

Q<r {p £ R.,^.,,:p, e CF_ (M,) for all 7 e S*}. (75)

The sets Qy are therefore a subclass of the sets Qx.sr' corresponding to the case X= 0.
In general a given Q^ will contain several different sets Qje-Iy+- If w ^ 0 it is easily seen
that the collection of all Q#> forms an open covering of the whole of R4(n_i) so that tc is

everywhere the boundary value of at least one r^ (k). This result, which is due to Ruelle
[25], is the usual starting point for the study of analyticity properties of the n point
function.

Notice that some of the conditions defining Cy> are redundant : if / I, U Ii with /, n I2 <f>

and _T,_2 6 Si", __>, e V+ is a consequence of />,, _, e V+.
The first to introduce generalized retarded functions was to our knowledge Polkinghorne [23],
the systematic study of a subclass of these functions is due to Steinman [24] while Ruelle [25]
treated them in full generality. The first proof of (72) appeared in [26]. The definition (70) in
terms of T products appears to our knowledge for the first time here and is extracted from [22].
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Let us indicate how the domain 0~\2 can be reobtained starting from the generalized

retarded functions with the help of the special and rather elementary edge-of-the-
wedge theorem (n 2). From (75), we deduce:

Ï(P)=?AP) (76)

in _Q[2 for 0 such that _Q12 cz Qp.
There are therefore several different functions ry (k) analytic in different tubes

0~g> the boundary values of which coincide on the real open set _Qt 2. An elementary
calculation—it was performed in [6]—shows that there are 16 different cells satisfying (76)
and that the convex envelope of the corresponding cones Cy is precisely C12. Therefore
the successive application of the ordinary edge-of-the-wedge to different pairs of the
functions r^ yields analyticity in the local tube 0~\2 obtained above.

That the inclusion of general retarded functions gives more information can be seen
as follows. It is clear that the rt have a much larger support in x space than the ry : as it
is easily seen, the convex hull of suppr7 equals the whole space R4(„_1) if n > 2, so that
the Fourier transform r, is not the boundary value of a single analytic function, in
contrast to the ry. If we consider the set of all 7 in a given cell 0^, wewillhaveFj ^in_Qy
for all I <=-0y. The application of the generalized edge-of-the-wedge procedure to this set
shows that in Qy tc is the boundary value of a single function analytic only in a localized
tn\>e0~#>, while tc ry gives us analyticity in the whole of0~y>. Now, in order to show the
invariance of the domain of analyticity under complex Lorentz transformations—not
to speak of the proof of the crossing theorem—global methods of analytic completion
are needed, in which analyticity near the complex infinity within the tubes 0~#> play an
essential role, as it can be inferred from the corresponding proofs in the papers [20] and
[21].

The role of the generalized retarded functions for n > 4 will be discussed after the
following example.

The five-point function

The essential support of the amplitude tc pertaining to the region _Qjr> #> relevant
for the computation of the matrix element (p\p2pi\S — 1 \—p4, —ps) consists, according
to formula (64), of the following three cones:

Cr {x=(xi,. .,x5):xs xt,x4 x5,xr-x5eV+,xs-xreV+} (77)

where (r,s,t) is a cyclic permutation of (1,2,3). Notice that the conditions xs — xs e V+
and xt — x5 e V+ are implied by the conditions written down in (77) and so they can be
omitted. The fact that

5

2PtX, (Ps+P,)(xs-xr)-(p4+p5)(xr-x5)
1

when 2î^i 0 and x e C, immediately yields the dual cones

Cr i(p:îpt 0,ps + pteV+,Pi+p2+pi -p4-p5eV^ (78)

We have therefore a decomposition into three 'partial amplitudes' :

3

tAP) Ifr(P), peQ.r,*>+ (79)
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where each/, can be analytically continued into the localized t\ibe0~r attached to the
cone C,.

The linear combination (79) is analytic in the localized tube^' =0~\ O rl2 H r\
attached to the cone

C- f)Cr {^:|a= 0,Pi+p2,p2+p3,p3 +Pi eF+) (80)

[since p4 + p5 e V_ is implied by the three conditions (80), it is omitted]. The question
we want to answer is: over which real physical points p is *MC H r1 # 0, i.e., Cfl J'
non-empty?

According to Lemma 3, section 2, a necessary and sufficient condition for that is
that the linear manifold

0(p) ={x= (xu. .,x5) :x,-Xj Xtp( - Xjpj, i<j, i,j 1,. .,5,

(A, A5)eR5,_£E^} (81)

do not intersect C\{0}, where C is the closure of the dual cone to C. C is best computed by
introducing the variable transformation (invertible in view of 25^1 0)

"r-A + Pt, (r,s,t) cycl. (1,2,2),p4-p5 Ay (82)

in terms of which C becomes

C {(o-!, o-2,0-3, v) :ar £ V+, r =1,2,3, v arbitrary}

and

5

iPiXt 2 h(-xr + xs+X,-x4~ x5)ar + v(x4 - x5).
1 cycl.

This implies immediately:

C {x:x4 xit i[-(xr - x4) + (xs - x4) + (x, - x4)] £ V+, cycl. (1,2,3)} (83)

Now the linear manifold 0(p) will not intersect the cone C only if 0 x4 — x5
X4p4 — X5p5, which implies A4 A5, since we suppose the four-vectors p4,p5 non-
collinear, and if

i(-A,A + Xsps + Xtpt) =Vre V+, (r, s, t) cycl. (1,2,3) (84)

for some (A,,A2,A3) / (0,0,0). Condition (84) involves only the three out-going
momenta. We can resolve the system (84) with respect to the momenta pr. The mass shell
condition p2 m2,pre V+—we again treat the case of different mass particles for the
sake of generality—fixes then uniquely the value of the parameters A,. We get

Pr-mT-^^=, t7,eF+, (r,s,t)= cycl. (1,2,3). (85)
V(Vs+r,,)2

Thus C 0 _^#will be empty at a point p if and only if the three outgoing momenta are
presentable in the parametric form (85) in terms of three four-vectors r]r in V+. In order
to see that there is an abundance of physical points not representable in the above
form, let us compute the square of the three-dimensional space-time volume subtended
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by the three four-vectors pr (85), which is equal to the Gram determinant of the 3 x 3
matrix (prps) formed by the scalar products prps. We find

4m? m\ m\
0 < det (pr ps)

2 3 det (Vr r]s)<m2 m\ m\. (86)
11 sVi + Vi)
i<J

The factor 4 comes from the determinant of the linear transformation v, xs + xt which
has the value 2, while the last inequality stems from the fact that the factor multiplying
(m i m2 m-A 2 in the second equality varies between 0 and 1 when the three vectors nr vary
over V+. In order to prove the last inequality, we compute by brute force the expression :

FI (Vt + Vj)2 - 4 det (Vr Vs) 2 ti'?2 \-H V? + 3(^1 - r,2)2]
i<j cycl.

4- 2(n2 + r,2)(Vs+ Vt)2 (Vt, Vr) + Av2 (Vs, v,)2}. (87)

Since all the v, vs are >0 for tj, e V+, r 1,2,3, we see that (87) is always >0 ; it vanishes
only when all three rf2 0. Therefore the last equality sign in (86) is attained if and only
if all the three t/, are light-like. Thus we have proved that the S matrix elements
(Pip2pi\S — 1|—p4,—Ps) are boundary values of a single function analytic in ~4lc Ct0~l
provided that the outgoing momenta satisfy the inequality

det (prps) - m2m\m\ 2(p.p2)(p2p3)(p3p,) - 2 m2 (pspt)2 > 0. (88)
cycl.

Since for physical values of the outgoing momenta the determinant (86) can take any
value >0, we see that the condition (88) excludes only a relatively thin layer containing
the thresholds. The 'region of analyticity' (88) can be best visualized in terms of the
Dalitz plot, where the final state configuration is described in terms of three independent
parameters, the total centre-of-mass energy M Vp2, v/herep =px +pi+pï (M, 0),
and the three centre-of-mass energies Er= (pr,p)M~1 =xrM linked by the relation
E. + E2 + E3 M, respectively the relation x. + x2 + x3 1. For fixed M > w, 4- m2 +
m3 the physical region is the region D > 0 contained in the triangle TT, > mr, r 1,2,3,
bounded by the third degree curve D 0, homeomorphic to a circle, where D is the
Gram determinant (86). If M is above a certain limiting value, the domain (88)
D > m\m\m\ will appear in the Dalitz plot. In the limit M -> oo this domain will
rather quickly converge to the whole of D > 0. In the equal mass case mr m,
r 1,2,3, the maximal value of D for fixed M is easily calculated to be

(M2 \2
Dmax=iM2{—-m2\ (89)

so that for M > V4/3 3m the 'region of analyticity' (88) will start to appear. This value
is not too far from the threshold energy M 3m.

The results (80) to (88) can be obtained with the help of the ordinary edge-of-the-
wedge theorem (n 2) via the generalized retarded functions by exactly the same
method as for the four-point function [see (76)]. They were therefore known to the
authors for quite some time. Let us mention that also in the general case 2 particles ->
(n — 2) particles there exist physical points where the scattering amplitude is the boundary

value of a single analytic function.
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A comparison of the localized tube 0~\2 (67) with the 'extended localized tube'
r\l2 (69) in the case of the four-point function, leads naturally to the supposition that
the full use of causality will lead for arbitrary n to the generalization

1=2 fr (90)

/, analytic in 0~'rl, r — 1, N, where

rx \ u Nrl\r\jf. (9i)
(Ae_5?+(C)

AT being a sufficiently small complex neighbourhood of the real point considered.
Indeed, this was proved in [7] for the case n 5. It was achieved through the study of the
set of Steinmann relations satisfied by appropriate groups of generalized retarded
functions: the Steinmann relations were resolved through a repeated use of the
generalized edge-of-the-wedge theorem and the invariance of the domain of analyticity
of the functions fy under complex Lorentz transformations was incorporated. It is

hoped that a general proof of (90) and (91) will be possible by using the geometrically
simpler method of this paper.

In order to exhibit explicitly the improvement due to (90) and (91) compared to
(79), we shall calculate the domains^' corresponding to the cones (78) in the immediate
neighbourhood of a given real point p. All we have to do is to compute the extended tubes

rr= U A STr with rr {($, £,) e C8 : Im $ e V+, Im £. £ V+} (92)
Ae^+CC)

where | k, + k2 + k3, £r ks + kt f — kr, (r,s,t) cycl(l,2,3) in the neighbourhood
of the real point £ =p, + p2+ p3=p, $r=p — pr, />. £ V+(mt), i= 1,2,3. Now according

to [27] in this region the extended tube (92) is given by the inequalities:

Imz > 0, Imz. > 0, Im/* > 0, e ±1, where

Z e, *r &, 4=Wr+ tVw2-ZZr, Wr (f£). (93)16)

In the vicinity of the real point p we are allowed to approximate the domain (93) by its
tangent planes, i.e., to put z z + Sz, zr zr + Sz„ wr w° + 8wr and develop the
inequalities (93) up to first order in Sz, etc. Since at p all quantities in (93) are real, we
obtain

Im 8z > 0, Im 8zr > 0, —— Im [2(V\~r + ewr)8wr - ez8zr - ezr 8z] > 0, e ±1,
2VXr

v,herez=p2,zr (p~pr)2, w (p-pr,p),Xr (p-pr,p)2 - (p -pr)2P2- (93.a)

This is the sought local description oir'r'. It ceases to be valid only at points where the
determinant A, vanishes, i.e., when the vectors p and pr become parallel. In (93a) we
have to insert

8* s(i*rï i 8k2 + 2 2 8(K,k,
\l J 1 r<s

6) There is another part of the boundary of the extended tube in two four-vectors—the so-called
S curve. This is, however, very far from the points £P p — pre V+, f p e V+ considered.
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and similarly for 8zr and 8wr. Since in this linear approximation the complex mass
shell J(c is given simply by 8k2 0, r 1,2,3, 8(ks,kt) =ur + ivr arbitrary, (r,s,t)
cycl(l,2,3), we find after an elementary calculation that 0~'rl H JKe is locally described
by the tube :

lr (v, vr) (Vxj - p2 - exr)vr + [Vx2 - p2 + e(xr - p2)]v > 0,

e +l,vr>0,v v,+v2 + vi> 0. (94)

Here we have used the variables of the Dalitz plot already described:

mr
p2 M2,(pr,p)=ErM xTM2,x,+x2+x3 l and/x, —. (95)

Note that (95) and pr e V+ (mr) imply the inequalities :

0< /x, < xr< |(1 +p2-p2- ^2), (r, s, t) - cycl. (1, 2, 3)

3

and 2 ft-r <L (96)
i

The cone (94) can be drawn in the two-dimensional plane of the variables v, and v : it is
the sector between the two straight lines If 0, l~ 0 contained in the first quadrant
v, > 0, v > 0. For xr p.r the two straight lines Vj. 0 degenerate into vr — (1 — pr)v 0.

When xr > /x, the set

v p>0, vr=(l-pr)p>0 (97)

[note that (96) implies 1 — /x, > 0 when xr > pr] is always contained in (94) since

l\ (1,1 - pr) (2 - pr) Vx2r-p2r+ epr (x - fir) > (2 - pr) VxJ-pJ

-pr(x- Hr) > 2(1 - /x,) Vx2. - p.2 > 0 if xr - p., > 0. (98)

Here we have used the inequality Vx2r — p2r > xr — pr and (96). Therefore, the open cone
(94) is always non-empty, excepting the case xr pr. But this case corresponds exactly
to A, 0, when the linearized description of 0~'rl D ^#c ceases to be valid. Now xr p,r,
i.e., E, mr corresponds to the configuration:

p, (m„0), p,.t (Vp2 + mls, ±p)

in the centre-of-mass system^) (M, 0). In this configuration no two vectors are parallel,
except when_£ 0. So from Lemma 2 of section 2, we conclude that 0~'r' O J(c is always
non-empty, except when pr mre, r 1,2,3, e2 1, e e V+, i.e., except when all the
three four-vectors pr are parallel. This is certainly an improvement compared to (78),
(79).

Let us consider now the intersection^' Vt 0~'s 0 ^c, r ^s. We have to look at the
intersection of two sets (94), say r 1 and r 2. By choosing vx, v2 and v as independent
variables, we immediately see from the inequalities (98), r 1,2, that the set

v p>0, vr=(l-pr)p>0, r l,2
is contained in^"',' r\0~'2C\ J(c providedxr > pr for r 1,2. As before we conclude that
r'rl H 0~'l D ^c, r ^ s is always non-empty with the exception of the case when all
three vectors pr are parallel. This is interpreted by saying that the five-point scattering
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amplitude can be decomposed everywhere only into two partial amplitudes each of
which is restrictible to the mass shell. The only exceptional point is the threshold
pr mre, r 1,2,3.

We are still left with the case of the intersection 5""/ D 0"2l (A 0~\ 0 J(c. It is
described locally by the inequalities :

1% (v, i>r) > 0, iv >0, € ±1, r =1,2,3 (99)

[the inequality v > 0 is dropped since it is already implied by (99)]. As it is readily seen,
the set (99) is empty when the point p is in a neighbourhood of the threshold pr mre,
r 1,2,3. Now, when the masses are equal (w, m) it can be proved by a chain of
ingenious inequalities, which will not be reproduced here, that (99) is non-empty
whenever

M>4,8w (100)

where M is the total centre-of-mass energy17). This shows that with the exception of a
rather small set around the threshold/), me, r =1,2,3, the five-point scattering amplitude

is the limiting value of a single analytic function, which is a palpable improvement
of (88).
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Appendix

Proof that Cw has interior points

Cw {x- for all 7 £ S"+ U X, xh(I) - xh.{xm e V+}

We can picture the whole list of these conditions by drawing the_ following
diagram: let «,,...,«„ be distinct points in R2. If the condition x} — xk e V+ appears
in the list given above, we draw a line between a3 and ak with an arrow in the direction
k -*-j. In this diagram there will be, at most, two lines joining at and ak, namely one
pointing from a} to ak and another pointing from ak to a} (even if, e.g., the condition
Xj — xk £ V+ appears many times). We claim that the graph obtained in this way is a
connected graph. Indeed, if it were not, there would be two proper subsets 7 and 7' of
1, n such that no line connects {ay}^, with {ak}keI>, and: 7 U P {1, n}, I 0 I'

0. Then one of these subsets, say 7, would be in 0'+ U X; the condition
xhii, — xh'(D £ V+ would be represented by a line joining {aftj to {ak}r, in contradiction
with our hypothesis.

Because this diagram is connected, it is possible to make it into a tree diagram by
striking out a few lines. We claim that, if the corresponding conditions xt — xk £ V+ are

7) This estimate is due to A. Martin. The authors are very thankful for his generous help.
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struck out from the list which defines Chh,, the remaining conditions define a 'simplicial'
cone, i.e., that the remaining conditions can be written x —x e V+,. xu —xv e
V+ with the xu — xv being independent variables. This is easily proved by induction on
the number n of vertices of the tree : indeed a tree with n — 1 vertices is obtained if
one extremity of the n vertex tree, say xu is cut-off. The line thus severed corresponds
to a condition xUi —xv £ V±. The rest of the conditions involve only variables where
%„. does not appear and are linearly independent of x — xVi.

As a consequence, we see that ChV is always contained in a 'simplicial' cone. Hence
it is a proper cone and its dual has interior points.

Final Remark

The present work is a contribution to the study of the local analytic structure of the
scattering amplitudes, from the point of view of the general principle of quantum field
theory. It is an interesting problem to compare these results with those obtained in the
framework of pure S matrix theory, as developed especially by Stapp and co-workers
[8]-[10]. In this connection we draw the attention of the reader to a very recent investigation

by Cahill and Stapp [28] about the links between the algebraic aspects of the
two points of view.

It is, however, clear that the postulated cluster properties for the S matrix with
exponential rates of decrease, imply a richer local analytic structure of the amplitudes
near the physical regions, than the corresponding structure obtained on the basis of
local field theory: this is because, under the name of 'macrocausal laws', the S matrix
theory includes from the beginning the assumption of the short range character of
strong interactions together with relaxation-type assumptions and the usual principle
of causality.

Concerning the continuity properties of the scattering amplitudes, as discussed in
section 2, it would be interesting to compare them with the analogous analysis by
Williams [29], who approaches the problem with rather different methods.
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