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Abstract. The relativistic linear formalism developed by W. Scherrer leads to a covariant
expression of gravitational energy-momentum. In the case of a mass distribution with spherical
symmetry (Schwarzschild's exterior solution), this tensor gives a total gravitational energy equal
to — Mc1. How can the minus sign be interpreted? A detailed analysis of Schwarzschild's interior
solution shows that the gravitational energy has to be considered as a generalization of the classical
potential energy, which is negative in our attractive case.

1. Introduction

The linear formalism (LT) developed and applied to General Relativity by Scherrer
since 1954, leads to a covariant expression of energy-momentum [1]. The field equations
of this theory in fact allow us to set conservation theorems of the form

—^- 0 (X,p 0,1,2,3), (1.1)
dx*1

where ÏA^ =g(+1) Tx /'i,g(+1) det (gx\J) (for the definition of the notations employed
in this work, the reader should refer to Scherrer's original paper). Recall to mind that
the indices placed before the comma correspond to the Lorentz transformations, and the
indices placed after the comma correspond to the general coordinate transformations.
On the other hand, the gx-j(1 of the LT are connected with the gM„ of the quadratic
formalism (QT) by the relations

Sinvr eaßga',„gß',v (1-2)

where the eaß are the Eisenhart symbols: e00 1, ell=—l, ex^ß 0. In opposition to
what happens in the QT, the Tx ^ form a 'true' tensor, which can be identified to the
energy-momentum tensor of the system. The tensorial nature of the TAt,M allows us
in particular to localize the energy-momentum, which is impossible in the QT.
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Applying this formalism to the case of a mass with spherical symmetry, Scherrer
showed that the gravitational energy of the system is equal to Mc2 [2]. In the case of the
plane gravitational waves (PGW), however, we obtain an energy density apparently
negative definite [2], [3], as well as a momentum density opposed to the propagation
direction of the waves. In a later paper, we shall show quite generally that the tensor
TXt'1' must in fact be multiplied by

1 8ttkn
.*£ ——'

KE C*

kn being the Newtonian gravitation constant. The energy and momentum of the PGW
then have the correct sign.

In return, the formula E Mc2, obtained by Scherrer from Schwarzschild's
exterior solution, becomes now E —Mc2. The purpose of the present work is to show,
with the help of a 'concrete' example, that, far from being surprising, the minus sign
which appears in this formula is on the contrary necessary to the self-consistence of the
formalism. To show this, we shall consider Schwarzschild's interior solution.

2. Schwarzschild's Interior Solution in the LT
Scherrer recently showed [4] that, for a sphere of perfect incompressible fluid with

constant density p, the LT provides for the same line element as the QT, i.e. in polar
coordinates, for the potentials different from the Euclidian g

goo [f(r)]2, gn=-[h(r)]2, (2.1)

f(r)=A-ll-\r-\ h(r)
R, I Jr\2

where

2A-* 1-*Z\. R2 -

2 V \ R J KEpc2

RQ coordinate radius of the sphere. On the other hand, we find for the pressure

1 2~V ~\rJ ~
P —rT2—

V ' (2-2)
KFR2

A
2a/ \R

3. Energy

The total energy of the system (sphere + gravitation field) decomposes as follows :

a) the 'material' energy Em of the sphere, defined by the phenomenological tensor
@'XP of the field equations;
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b) the gravitational energy of the internal field Egi ;

c) the gravitational energy of the external field Ege.

We can thus write the total energy

589

£,„,= <V ro,-° g d'x
ke /<+n

(3.1)

the integral extending to the whole three-dimensional space (we point out that the
field shows no singularity in our case).

We give below the expressions of the various quantities included in the integral
(3.1)

•°=go:"®,«-°: f pc2,

n (k - !)2
r° =^7IT (Scherrer [5]).

r2fh2

(3.2)

(3.3)

In the internal case, / and h are given by the expressions (2.1). In the external case,
we have

2a 1/2

(3.4)

(3.5)

where 2a represents the gravitation radius. On the other hand

g =fhr2sin&.
(+i)
In introducing the expressions (3.2)-(3.5) into the integral (3.1), we finally obtain

the total energy. According to the decomposition of E,ot mentioned in the beginning of
3, we have successively

Em= j* 60-° g d3x= J" pc2hr2sinedrdêdck
sphere

QttR

i<e

(+1)

f R0 R0 I fR0\2]
arc sin /1 —I — I >

[ R i?V \R) J

Egi -— f TQ;0 gd*x -- f
«E J (+1) KB J

(h-1)2
sine dr d§ dcf)

(3.6a)

6ttR\ R0 AR0 R0 rarc sm 1 / 1

ke [ R 3 R 3RsJ

Ro"2

R
(3.6b)

E9e=-~ Tn* g d?x -
KE J (+1)

167ra

«E

1

2+-
1 +

2a

R~o-

(3.6c)
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where R2 3JKEpcz, R0 coordinate radius of the sphere, 2a Rg gravitation
radius. Here we are not so much interested in the exact expression of the total energy,
which we obtain simply by adding the results (3.6a-c), but in the total energy of the
Newtonian case (R0 /R « 1). In developing the expressions (3.6a-c) in power series of
(i?o/rt),wefind

SknM2
(3.7a)

(3.7b)

(3.7c)

In this approximation, the total energy is sensibly equal to

£«„« MNc2 (3.8)

which is evidently a very satisfactory result. However we obtain a more interesting
interpretation of the above calculations in introducing the relativistic mass M0,
defined by the relation

£ ~ llf c2 |r-m "1nC 1

_ '
5 K0

1 «NM2
h°>

10i?o
1knM2n

Ea, ~ with
2 R0

MN
AttRI

3

M,O —

sphere
j pydAx (3.9)

yd? x being the Riemannian volume element of the sphere. By means of some elementary
calculations, this definition allows us to put the total energy into the form

EtotçztM0c2--^-^^) (3.10)
5 K0

The second term is just the classical potential energy of the system, which must
be negative (attractive case).

Since this term is the contribution of gravitational energy, the discussed example
shows clearly that the choice of the factor —1Jke is perfectly correct. In the Newtonian
approximation, this factor effectively leads to the correct sign of classical potential
energy. In short we can say that, in the relativistic theory, the gravitational energy
appears as a generalization of the classical potential energy. Under these circumstances,
it is quite natural to obtain —MNc2 (instead of +MNc2) as total energy corresponding to
the only exterior Schwarzschild's solution.

4. Another Approximation Method for the PGW

The question of the energy-momentum sign being thus resolved in a most general
way, the problem of the PGW presents no more contradictions. It is interesting to
compare the solution given by the LT to the corresponding results obtained within the
QT.

This result has already been obtained by Tolman in 1930 [6] with the help of quasi-Galilean
coordinates. The originality of our method lies in its absolutely covariant character.
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In trying to resolve the field equations in first approximation in a quasi-Lorentzian
coordinate system, we write

gM,sv + V (IVH1)- (4J)

Introducing (4.1) into the R^

&£„ dr?,
dxv dxK^^--^-+rur°vf)-r%r°n0 (4.2)

we can see that R^ decomposes into a term of first order r (given by the dT/dx) and a
term of second order sM„ (from the TT). We shall similarly write R r + s, so that the
vacuum field equations become in this approximation

V - iV r ~V + iV s + iVs- (4-3)

The left members of these equations are simply the S„„ (Rßv — ig^R) in the
first approximation. The right members are of second order. In comparison with the
general field equations

S„„ -#c£@„„ (4.4)

we identify these right members (divided by —ke) with the components @M„ of the
gravitational energy-momentum tensor in the considered approximation.

On the other hand we shall eliminate the terms containing dT/dx from 0^,
because we wish to avoid that the energy-momentum depends on the second derivatives
of the gßV. Thus we can write

®»v — [V~iVs] (4-5)

that is

& =1
KE

m, r?, - r£ r%) - K„ ** (rao r°ßp - raß r%)i (4.6)

Applied to the case in which, for example, only the component g23 oscillates, the
formulas (4.6) give, for the energy (wgrav) and momentum density (Jlny)

w«rav -r— h'2, jlsrav -—h'h, (AA)
2ke 2ke

where

dh ¦ dh
g23 ~ h[k(x° - *>)], h' —v h — •

dx dx

These results agree with those of the LT and those of the QT obtained by other
means.
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5. Conclusion

The preceding considerations on the sign of gravitational energy-momentum
allows us to eliminate immediately the difficulty about the gravitational waves
mentioned in 1. The energy and momentum densities become both positive definite
for waves propagating in the positive direction of the #'-axis (for example). Scherrer's
theory then presents no internal contradiction, and the 'true' energy-momentum
tensor which it allows to be defined constitutes probably one of its most beautiful
successes. Therefore this formalism represents a natural extension of Einstein's
quadratic formalism.
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