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Molecular Multipole Moments Derived from Collisional
Quenching of H(2s)

by V. Dose and C. Semini1)
Physikalisches Institut der Universität Würzburg, Würzburg, Germany

(10. VIL 74)

Abstract. In this paper we try to improve on existing Born approximation treatments [1]
of collisional quenching of métastable hydrogen atoms by molecules in thermal energy collisions.
A four-state coupled-channel impact parameter calculation is carried out. The molecule is treated as
a static charge distribution whose rotational motion is neglected. Cross-section results from the
present calculation are used to calculate new values of multipole moments for CH3I, N2, C02,
and CC14 from available experimental data.

I. Introduction
The well-known sensitivity of métastable atomic hydrogen to electric fields makes

it a promising tool for the investigation of molecular charge distributions. This possibility

was first pointed out by Gersten [1] who calculated cross-sections for

H(2s) + M ~> H(2p) + M

-> H(ls) + Ly - a + M (1)

in a first-order straight-line trajectory impact parameter approach. To calculate
transitions for the above process Gersten replaced the molecule by its lowest-order
non-vanishing multipole moment. This simplification is similar to the procedure
adopted in calculating van der Waals forces, e.g. with overlap between charge
distributions of the interacting systems being neglected. Since the order of magnitude of
quenching cross-sections is 10"14 cm2 corresponding to an interaction distance >10-7
cm, the van der Waals assumption should be well justified.

However, due to the extreme sensitivity of métastable hydrogen to electric
fields, a Born approximation treatment of the collision leads to transition probabilities
exceeding unity already at these large impact parameters. Gersten, therefore, adopted
the standard procedure from line broadening theory and took transition probabilities
P(p) for impact parameters p < p0 equal to one, p0 being the largest root of the equation

P(p) V (2)

We consider this procedure to be formal and unphysical in the present case. From the
interaction distance of 10-7 cm given above the interaction time for a projectile
velocity of IO6 cm/sec would be of the order of IO-13 sec. Comparison of this time with
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the life time of the n 2 states of atomic hydrogen in a strong electric field t « 3.2 x
IO-9 sec [2] shows that the effect of the collision will only be a thorough mixing of 2s
and 2p states. The decay of the 2p state by emission of Lyman-Alpha radiation, which
completes the quenching process, takes place when the collision is already over. As a

consequence elastic collisions should occur even at impact parameters p < p0. This,
in turn, would lead to smaller quenching cross-sections.

In Section 2 below we give a short outline of the first-order theory modified by
the strong mixing assumption. In Section 3 a coupled-channel solution following the
method proposed by Takayanagi [3] and explored by Bauer and Callaway [4] is
presented. Results are discussed in Section A.

We shall use atomic units except where otherwise specified.

II. First-Order Theory

Consider a molecule M approaching a métastable hydrogen atom with velocity
v (Fig. 1). Let R denote the position of the molecule's centre of mass with respect to
the hydrogen atom. The angles specifying the direction of R are chosen such that p 0
is in the direction of ?and 9 tt/2 fixes the collision plane. Let y and w specify the orientation

of the molecule with respect to the collision plane. The interaction matrix element
VVpi Lp for hydrogen states with angular momentum quantum numbers L'p and Lp,
respectively (U L ± 1) is then given by

,/ / 1 /+l\
VVu.tLp ATTVT+lMt 2 (-1)«-'-1

am \m a X J

L'i
Att \ YÎ+J9.P)
3 YÎ\Lp\Yr(X,w)--^TA>, (3)

r is the radial coordinate in the hydrogen atom and / is the order of the molecule's first
non-vanishing multipole moment Mt. In the special case of a 2so -* 2pp transition this

co

0 v

MOLECULE M

H-ATOM

Figure 1

Coordinates used to describe the collision.
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expression simplifies to

625

/ 1 / +1 \ Y,+r(0, p)
V2so,2,» l2n(-iy+l-1VÏTÏMl-2Y!r(x,w)[ "J (A)

\m —p p — mj Rl+2

The first-order transition amplitude is then

¦* 2so,2p« — J '2so,2pp,dt (5)

We evaluate T2so2m in a straight-line trajectory approximation. With

R p + vt (6)

and coordinates chosen as in Figure 1 the time integration is given by

AYi+n-r.9
R~2 dt:

0 for 1 + p — m even

l\
(-1) (Z + l)/2+|£-M

21 + 3

vp'+1 \tt(1 + m+l-p)\(l + p+l-m)

1/2

(7)

We insert (7) and (4) in (5) and obtain for the first-order transition probability

2so,2pu V l+l\vp

Mt
(12P)2-tt(1+1)(21 + 3)- X' (_]\U+l)/2+X-m

m

yr(v.o>)i i i + i
m —p p — mj V(l + m + 1 — p)\(l + p+1 — m)\

(8)

The sum in this expression is restricted to values of m such that I + p — m odd.
The transition probability, of course, diverges for small impact parameters p and is
replaced by a constant for p smaller than some critical impact parameter pK. We define

pKoy

2so ,2pn Ok)-
1 + K

(9)

and obtain the total cross-section as a function of (y, w).

1 f
Q2so,2pu(x, <") - r—jz rrpi + 2-TT J P2so2pil(p)pdp. (10)
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Finally, we sum over the degeneracy of the 2p state and average over molecular
orientations

Q.2S,2p=—\ ^Q2so,2pAXi°JI)dQ (H)

and obtain

Y2s,2p —
ttCi

.1 +
(i + A)'/<'+1>\ ;

i\(9-22l+3(i + i)(i\y) l/ci+i)

(21 + 2)\ I V

2/(1+1)

(12)

Values of the constants C/ which arises from the numerical integration involved in (11)
are given in Table I. Eq. (12) may be modified to obtain Gersten's result taking K 0
andC; 1.

The choice K 0 corresponds to complete quenching for impact parameters
p < po- For reasons given in Section I we propose to assume complete mixing of the
n 2 states inside a critical impact parameter, e.g. K=l. This choice reduces the
quenching cross-sections by a factor V2 for a dipole molecule and by a factor of 2 for
I-+00 as compared to Gersten's result.

A constant C, 1 is obtained in Gersten's work because he takes the average over
molecular orientations and the sum over the degeneracy of the 2p state after equation
(8). This is certainly incorrect though numerically of minor importance.

III. Unitary Calculation

The method proposed by Takayanagi [3] as described by Callaway and Bauer [4]
consists of taking the matrix

e~iT (13)

with T as defined in (5) as an approximation to the S-matrix. Ifwe take into account only
the n 2 states in hydrogen, T has the form

2s 2p-i 2^o 2Pi

2s 0 a b c

2p-i a* 0 0 0

2p0 b* 0 0 0

2p, c* 0 0 0

(14)

The initial state

2s ~v
2p_x 0

îpo 0

AP» ^
0

(15)
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is transformed to the final state

627

2s * cosE

2^_i ia+/E sin E

2^o ib+/E sinE

2px ic+/E sin E

(16)

with

£ 0|2+|6|2+|c|2}l/2.

From (13) we obtain the transition probability

P2s->2p sln2E

and

72 _ A I 2so2puI
U 1

(17)

(18)

(19)

It is worthwhile to recall the Born approximation result (8) which is in the present
notation

°2s->2p(Born) — E

With (4) we obtain explicitly

(20)

12 Mtaixia AAy y Yr(x,co)

V(l + m)\(l-m)\

2-11/2

(21)

The prime on the inner summation indicates that m is restricted to values such that
1 + p — mis odd. Using (21) in (18), the total cross-section is obtained by an integration
over all impact parameters. The remaining average over molecular orientations must
be carried out numerically. The result is

<?, *r|£i, cos
TT \1/(,+1) (M,)2K'+1)TT \ 1 TT Y/('.+1) (MA

(22)

with

s^=0
y' YT<X.<»)

¦£ V(I + m)\ (I - m)\

2 \ 1/(1+1)

sin x dx dw. (23)

Values of Bt are given in Table I.
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IV. Results and Discussion

The cross-sections obtained in Sections II and III may be conveniently written as

(M, \2/0+1)
Qi=Yi{-y\ (24)

Values of y, are given in Table I for formula (22), (12) with K 0, and (12) with K =1.
Comparison of the last two lines in this table shows that the simple 'strong mixing'
estimate of Section II produces results which differ by less than 10% from the much more
elaborate coupled-channel calculation. Equation (24), together with Table I, may be

Table I
Numerical constants occurring in formulae (12), (22), and (24) of the text. With Af, in esu and v in
cm/sec the cross section is given in cm2

/1 2 3 4 Ref.

c, 0.961 0.913 0.874 0.847 (12)
B, 4.822 4.304 3.186 2.333 (22)

Yi 30.8 12.6 8.44 6.72 (12, K 0)

Yi 21.7 7.9 5.02 3.83 (12,K=1)
Yi 23.3 8.15 4.90 3.61 (22)

used to calculate multipole moments M, from experimentally determined quenching
cross-sections. Table II lists cross-sections for an impact velocity of IO6 cm/sec from
recent measurements of Dose and Hett [5]. The coupled-channel calculation (Table I,
last line) is used to derive multipole moments M,. Currently recommended values [6]
are listed for comparison.

Table II
Absolute quenching cross-sections for an impact velocity v 106 cm/sec in units of 10"14 cm2.
The respective multipole moments must be multiplied by FACTOR to obtain their values in
cgs units

CH3I C02 N2 CC14

1 1 2 2 3
0i 4.7 2.0 1.2 0.83
M, 0.84 5.0 2.3 12

M,, rec 1.6 4.3 1.5 10
FACTOR io-18 10-26 io-2« IO"3

There is a considerable disagreement between present and accepted values for the
dipole moment of CH3I. Though the difficulties associated with pressure measurements
of condensable vapours might introduce an appreciable error in the measured cross-
section, it is hard to believe that this would account for a factor of two.

The case of C02 is much more satisfactory. Noting that published values for the
quadrupole moment of this molecule range from 1.7 [7] to 5.9 [8] the agreement, in fact,
is good.
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A huge amount of data is available for the quadrupole moment of N2. But again
the scatter of values is large, ranging from 0.8 [7] to 3.1 [9]. In the absence of a detailed
discussion of the merits of the various methods to determine molecular multipole moments

the present value of 2.3 must be considered a reasonable answer.
Only three measurements of the octupole moment of CC14 are known at present.

Values of 0.55 [10], 1.5 [11], and 3.0 [12] are compatible with our result of 1.2.
The failure of the present method in the determination of the dipole moment

of CH3I precludes any definite conclusions concerning its usefulness. Instead we recall
that several more or less serious simplifications have been made.

1) Neglect of molecular rotational motion.
2) Neglect of higher order multipole moments.
3) Complete neglect of dispersion forces.

While we are going to remove the first two restrictions with the aim to improve on the
present treatment, a proper treatment of dispersion forces would at present meet with
unsurmountable difficulties.
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