
Grüneisen Gamma of some cubic crystals from
third-order elastic constants data

Autor(en): Ramji Rao, R. / Peter, M.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 47 (1974)

Heft 6

Persistenter Link: https://doi.org/10.5169/seals-114591

PDF erstellt am: 25.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-114591


Helvetica Physica Acta
Vol. 47, 1974. Birkhäuser Verlag Basel

Grüneisen Gamma of Some Cubic Crystals
from Third-Order Elastic Constants Data

by R. Ramji Rao1) and M. Peter
Institute of Physics of Condensed Matter, University of Geneva, Geneva, Switzerland

(30. VIII. 74)

A bstract. A simple procedure is described to calculate the generalized Grüneisen parameters for
longwave acoustic modes in cubic crystals from third-order elastic constants data. This procedure
is used to calculate the limits yL and fH of the Grüneisen gamma of sixteen cubic crystals for which
the measured third-order elastic constants are available. The agreement between the calculated
limits and the experimental values from thermal expansion data is, in general, good. It is found that
the alkali halides NaCl and NaF confirm Barron's predictions and the unusual behaviour of KCl
and LiF is discussed within the framework of negative mode gammas. In the alkaline-earth fluorides
CaF2 and BaF2 the elastic yH is found to be smaller than the thermal y„ indicating a large contribution

to yH from optical modes at high temperatures for these fluorides. In silver, gold and aluminium,
farther neighbour interactions appear to be predominant. In indium antimonide, the calculated yL
is negative which is, perhaps, suggestive of the experimental fact of the existence of a negative
thermal expansion region at low temperatures for this insulator.

1. Introduction

Thermal expansion is a direct consequence of the anharmonicity of the lattice and
is calculated from the anharmonic terms in the power series expansion of the crystal
potential energy. In cubic crystals, a measure of this anharmonicity is the Grüneisen

gamma defined by

ßv ZvAvt
y(T)=!A V--- (1.1)

XCv Z Cvi
I

where ß is the volume coefficient of expansion, V the molar volume, y the isothermal
compressibility and Cv is the specific heat at constant volume. The Grüneisen gamma is
also sometimes designated as an effective Grüneisen function or as a thermodynamic
parameter. The right-hand term of equation (1.1) gives the microscopic significance
of y(T) in the quasi-harmonic approximation. yt is the microscopic mode gamma or the
generalized Grüneisen parameter (GP) associated with the ith normal mode frequency

») On leave from the Department of Physics, Indian Institute of Technology, Madras-600036,
India.
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o)| of the lattice and is defined by the equation

yi=-dJ^L (1.2)71 dlnV
The microscopic yt, in the quasi-harmonic approximation, is independent of temperature.

The Grüneisen gamma is a weighted average of the individual y('s, the weighting
factors being the Cvt, the constant-volume specific heat contribution of the ith normal
frequency cot of the lattice. The Grüneisen gamma is temperature dependent through
the temperature variation of the weighting factors, the C„, being a measure of the degree
of excitation of the mode. It follows that y should remain constant after all the modes
are completely excited and this is the high temperature limit yH. At very low temperatures

the thermal expansion coefficient of any crystal is mainly determined by the
elastic modes of the lattice and their dependence on the strains of the lattice. For
isotropic and cubic materials it is enough to consider the dependence of the frequency
on the volume strain. For elastic waves in isotropic or cubic materials, y, would depend
on the polarization and direction of propagation of the wave. At very low temperatures,
the number of normal modes excited in the jth acoustic branch is proportional to
vj3 (9,p), Vj being the wave velocity. So the Grüneisen gamma, at very low temperatures
T3 region), is again a constant designated as yL and is given by

2 \yt(9,P)Vr3(9,P)dQ
y,= —3 (1-3)

2 Vj3(9,P)dQ
1 1

where Q is the solid angle. The low temperature limit yL can be calculated from the
individual GPs (yj's) of the elastic modes. In this paper, a simple method is presented to
calculate the individual mode gammas yt for the elastic waves propagating in cubic
crystals from a knowledge of the third-order elastic (TOE) constants of the crystal
and hence the low and high temperature limits are evaluated. This has been done
for sixteen crystals for which experimental TOE constants are available.

2. Method of Evaluating the GPs for Elastic Modes

The equation for elastic wave propagation in a homogeneously deformed crystal
is given by Thurston and Brugger [1] as

Pow2Ut= J ASijtklNkNiUj (2.1)

l.kl

Here p0 is the density of the crystal in the undeformed state and w is the natural wave
velocity in a direction having direction cosines Nk in the undeformed state and is given
by 2L0/t where L0 is the zero-pressure length of the soundpath and T is the round-trip
sound travel time. u} are the components of displacement from the strained state. To
the first order in strain, AsiJkl is given by

Atj,u= ClktJi + 2, (Gik,ji,mn + Ckiimn8lj + CikniOmj + CnkJlomi)emn (2.2)
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The Cfkr ji are the adiabatic second-order elastic (SOE) constants in the undeformed
state and C(ttJ-,mn are the third-order elastic (TOE) moduli in Brugger's notation
determined by measuring the changes in wave velocity under isothermal strain. emn are
the deformation parameters. It may be mentioned that the initial strain is obtained by
isothermal deformation. So the coefficients of em„ are isothermal coefficients. A cubic
crystal subjected to a hydrostatic pressure, P, will experience a uniform volume strain
e (negative) and we have for emn in equation (2.2)

€„ £„„ e„ I --); etj 0 when i^j (2.3)

The values of p0w2(e) can be found as the eigenvalues of equations (2.1). We need to
know w2(0) and dw2/de. Hence we diagonalize the matrix

C [CtJ where CtJ lC?J,ktNkNl (2.4)-s
kl

by means of Jacobi's method to get the matrix A and the corresponding transforming
matrix u:

A ÜxCxU with ^ii (î); (i 1,2,3) ^
Next we transform the matrix

Du - 4 I NkNt (Cu_kl_m + Ckl,nn8u + Ctk,„i 8nJ + CnKJt 8ni) (2.6)
kl.n

to get

B=UxDxU
with

Bn Y(i

Here

Nx sin a cos p

Ny sin 9 sin p

Nz cos p

(2.7)

(2.8)

9 is the polar angle which the wave-vector makes with the Z-axis and p is the azimuthal
angle which the projection of the wave-vector in the basal plane makes with the X-axis.
Then we have

Y(i)=?-Xt (2.9)
Oe

and

- Y(i)
y,-7r~ (i V2,3) (2.10)

Z2i,
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Knowing the individual y,'s, yL is evaluated from the formula

| iy,Xr3/2dQ

yA
2 \x73'2dQ
3

I
1 1

(2.11)

A rigorous calculation of yB is possible only when all the y,'s are known. In the present
method we have only the y,'s of the low frequency non-dispersive modes and not the
high-frequency y;'s. However, one can estimate an approximate yH as, in the Debye
approximation, the high temperature limit is the mean value of the y('s over the
elastic waves propagating in all directions. The approximate yH is also calculated for
all the sixteen crystals in this way. The yL and yH values for the various crystals are
evaluated numerically using HP 9830A calculator. The program sampled 478 points,
over the irreducible spherical triangle, of the wave-directions.

3. Input Data and Results

For the calculation of the microscopic gammas we need, as mentioned above, the
experimental SOE and TOE constants of the cubic crystals and these are given in
Tables I and II. The values of the SOE and TOE constants of all the crystals with the
exception of germanium are those at room temperature and the values for germanium
are at 77CK. The TOE constants of copper at 4.2°K measured by Salama and Alers [2]
are not used in the present calculations as the authors themselves mention in their
paper that the TOE constants C1U and Ci23 need adjustment to get the appropriate
value of yL. d(Clx — CX2)/dP and dCM/dP are not accurately determined by their low
temperature measurements of the TOE constants. The limits of gamma for GaAs have
been evaluated using the TOE constants data of both Drabble and Brammer [8a] and
of McSkimmin and Andreatch [8b]. The values of yL and yH for the sixteen crystals

Table I
SOE constants in 101 ' dynes/cm2

S. No. Crystal C„ Cl2 Authors and reference

1 Copper 16.61 11.99 7.56
2 Silver 12.22 9.07 4.54
3 Gold 19.29 16.38 4.15
4 Aluminium 10.675 6.041 2.834
5 Nickel 25.03 15.11 12.24
6 Germanium 13.112 4.923 6.817
7 Silicon 16.577 6.392 7.962
8 GaAs i) 11.904 i) 5.384 i) 5.952

ii) 11.877 ii) 5.372 ii) 5.944
9 InSb 6.700 3.649 3.019

10 NaCl 4.942 1.269 1.281
11 KCl 4.090 0.704 0.627
12 LiF 11.397 4.767 6.364
13 NaF 9.68 2.42 2.80
14 CaF2 16.42 4.398 3.370
15 BaF2 8.948 3.854 2.495
16 RbMnF3 11.740 4.214 3.193

Hiki and Granato [3]
Hiki and Granato [3]
Hiki and Granato [3]
Thomas Jr. [4]
Sarma and Reddy [5]
McSkimmin and Andreatch [6]
McSkimmin and Andreatch [7]
i) Drabble and Brammer [8a]
ii) McSkimmin and Andreatch [8b]
Drabble and Brammer [9]
Drabble and Strathen [10]
Drabble and Strathen [10]
Drabble and Strathen [10]
Bensch[ll]
Wong and Schuele [12]
Gerlich [13]
Melcher and Bolef [14]



Table II
TOE constants in IO11 dynes/cm2

S. No. Crystal Cm C112 C« Authors and reference

1 Copper -127.1 -81.4 -5.0 -0.3 -78.0 Hiki and Granato [3]
2 Silver -84.3 -52.9 +18.9 +5.6 -63.7 Hiki and Granato [3]
3 Gold -172.9 -92.2 -23.3 -1.3 -64.8 Hiki and Granato [3]
4 Aluminium -107.6 -31.5 +3.6 -2.3 -34.0 Thomas Jr. [4]
5 Nickel -210.4 -134.5 +5.9 -18.0 -75.7 Sarma and Reddy [5]
6 Germanium -76.0 -41.0 -7.0 0.0 -31.0 Drabble and Fendley [15]
7 Silicon -82.5 -45.1 -6.4 +1.2 -31.0 McSkimmin and Andreatch [16]
8 GaAs i) -67.5 i) -40.2 i) -0.4 i) -7.0 il -32.0 i) Drabble and Brammer [8a]

ii) -62.2 ii) -38.7 ii) -5.7 ii) +0.2 ii) -26.9 ii) McSkimmin and Andreatch [8b]
9 InSb -31.4 -21.0 -4.8 +0.9 -11.8 Drabble and Brammer [9]

10 NaCl -84.3 -5.0 +4.6 +2.9 -6.0 Drabble and Strathen [10]
11 KCl -72.6 -2.4 +1.1 +2.3 -2.6 Drabble and Strathen [10]
12 LiF -142.3 -26.4 +15.6 +8.5 -27.3 Drabble and Strathen [10]
13 NaF -148.0 -27.0 +28.0 +4.6 -11.4 Bensch[ll]
14 CaF2 -124.6 -40.0 -25.4 -12.4 -21.4 Alterovitz and Gerlich [17]
15 BaF2 -58.4 -29.9 -20.6 -12.1 -8.89 Gerlich [13]
16 RbMnF3 -184.0 -24.0 +4.0 -6.0 -18.0 Naimon and Granato [18]

g
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Table III
Calculated values of yH and yL and comparison with experimental values

Calculated value of others
Tl r.„«^ „nl„ l«4-irt«oxrresen

y.XPt y«p. ylthe" ^-others7h
S. No. Crystal ?L Yh and reference and reference and reference and reference

1 Cu 1.765 2.032 1.72 ± 0.03 [19]
1.76 [20]

2.0[19]
1.97 [22]
2.03 [25]

1.77 [21] 1.98 [21]
2.07 [23]
1.97 [25]

2 Ag 2.493 2.498 2.2+ 0.1 [21]
2.63 ±0.16 [24]
at 20° K

2.4[21]
2.48 [25]
2.46 [22]

2.22 [21] 2.4 [21]
2.55 [23]
2.40 [25]

3 Au 2.582 2.574 3.50 + 0.22 [24]
at 12°K

3.0 ±0.06 [21]
2.90 [25]
3.09 T22]

2.92 [21]
2.20 ± 0.6 [23]

3.04 [21]
3.02 [25]
2.65 [23]

4 AI 2.265 2.216 2.65+ 0.15 [21]
2.45 [4]

2.34 [21]
2.19 [4]
2.18 [22]

2.62 [21]
2.33 [4]

2.58 [21]
2.27 [4]

5 Ni 1.410 1.613 — 2.0 [22]
1.88+ 0.08 [22]

—

6 Ge 0.504 0.757 0.45 at 8°K [27] 0.625 at 130°K 0.49 [26] 0.71 [21]
0.655 ± 0.01 [28] [27] 0.48 [21] 0.76 [31] W

0.50 [30] ~0.72[21]
0.80 [22]

~0.75 [30]
0.72 [32]

~0.52 [29] ~0.75 [29]
0.76 [28] I.

7 Si 0.250 0.489 0.25 [30] 0.446 at 280°K 0.25 [21] 0.54 [21] o
0.38 at 12°K [27] [27] 0.251 [29] 0.50 [29] S

0.437 ± 0.01 [28] 0.44 [21] 0.24 ± 0.02 [36] 0.45 [28]
0.57 [22] 0.21 [36]
0.43 [30] TJ

0.48 [32] ff
8 GaAs i) 0.735 0.994 0.583 (±0.01) [28] 0.75 [32] - 1.0 [28] M

using Drabble and Brammer
values S

ii) 0.369 0.654 hd

using McSkimmin and >Andreatch values



Table III (continued) <
o

Calculated value of others
Present calculations

S. No. Crystal Yl Yn and reference and reference

9 InSb

10 NaCl

11 KCl

-0.006 0.334

1.168 1.463

0.437 1.255

12 LiF

13 NaF

14 CaF2

15 BaF,

1.403

1.228

0.933

1.243

1.540

1.128

0.346 0.739

0.21 ± 0.01 [28]
-0.022 at 14°K

[33]
0.93 ± 0.03 [21]
0.94 [34]
0.90 ± 0.03 [35]
0.94 [35]
1.04 [52]

0.32 + 0.03 [21]
0.32 ± 0.02 [35]
0.34 [34]
0.324 [40]
0.35 [52]

1.7 [52]
1.70 ±0.05 [35]
1.60at60°K[37]
0.92 [52]

1.2 ± 0.2 [43]
(T < 10°K)

0.8 ± 0.5 [44]

0.2 + 0.4 [44]

0.55 [32]

1.55 [21, 34]
1.60 [25]
1.57 [35]
1.59 [37]
1.58 ± 0.01 [38]
1.06 [52]
1.47 [21]
1.45 [35]
1.50 [34]
1.44 [40]
1.48 [25]
1.46 [37]
1.45 ± 0.01 [38]
1.58 [35]
1.59 [37]
1.63 [41]

1.90 at 280°K
[43]

1.88at270°K
[44]

1.57 at 270°K
[44]

r-,othersYl
and reference

1.22 [21]
1.23 [25]
1.25 [29]
1.09 [34]
1.05 [35]
0.95 ±0.1 [39]
0.525 [25]
0.43 [21]
0.531 [29]
0.31 [34]
0.34 ± 0.03 [39]
0.33 [52]

1.85 [35]
1.92 [29]
1.65 [52]
1.13 T29]

£S)™
1.08 [45]
0.84 [46]
3.06 [47]

0.38 ± 0.03 [13]
0.26 [45]

-0.03 [46]

—.others
Y»
and reference

0.55 [28]

1.61 [21]
1.60 [25]
1.53 [29]
1.51 [34]
1.59 + 0.01 [39]

1.37 [25]
1.25 [21]
1.28 [29]
1.06 [34]
1.44 + 0.01 [39]

1.66 [35, 29,42]
1.72 [41]

1.44 [29]
1.39 [42]
1.55 [11]
1.21 [45]

0.77 ± 0.05 [13]
0.70 [45]

O
p
0
B
p
or*.
ino
3
a>

O
c
a"
o
n

«3

16 RbMnF3 1.713 1874
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Table IV
(Yh — yj Ior the sixteen crystals

S. No. Crystal (vh — yj (calculated)

1 Cu 0.267
2 Ag 0.005
3 Au -0.008
4 AI -0.049
5 Ni 0.203
6 RbMnF3 0.161
7 Ge 0.253
8 Si 0.239
9 GaAs i) 0.259

ii) 0.285
10 InSb 0.340
11 NaCl 0.295
12 KCl 0.818
13 LiF -0.160
14 NaF 0.312
15 CaF2 0.195
16 BaF2 0.393

calculated by using the procedure outlined in Section 2 are given in Table III and
compared with the available experimental measurements aswell as with the calculations
of others, if any. Table IV shows the differences between the calculated yH and yL
values.

4. Discussion

Considering the noble metals copper, silver and gold, the agreement between the
present calculated values and the experimental thermal values is good for copper and
silver. In the case of gold the fL experimental value is the one at 12CK and possibly
below 12°K this value may further decrease. Barron [48] predicts for a fee lattice a
value of 0.3 for the difference between the high and low temperature limits of gamma
for nearest-neighbour central interactions and a decrease of this value when farther
neighbours also interact. Following this, one finds from our calculations that a nearest-
neighbour central-force model holds good for copper while this is not true for silver and
gold. The recent lattice dynamical studies of gold by Lynn et al. [49] lend support to
this fact. Aluminium also falls into the category of gold in having farthest neighbour
interactions and the agreement between calculation and measurement of the limits of
gamma is excellent. We do not find the low temperature thermal expansion measurements

for the magnetic materials nickel and RbMnF3. For nickel, the calculated yH
value differs from the value given by Gschneidner [22] by 15%.

In germanium and silicon our calculated values of yL and yH are in fair agreement
with the values of McCammon and White [30] while the yL values reported by Sparks
and Swenson [28] are consistently larger. This has been pointed out by Beattie and
Shirber [36] also whose calculated yL value for silicon (0.24 + 0.02) agrees with our
value of 0.25. In GaAs, we calculated the limits of the Grüneisen gamma using the
measured TOE constants of i) Drabble and Brammer [8a] and ii) McSkimmin and
Andreatch [8b]. Our calculated value with either of these set of TOE constants for
GaAs does not agree with the measured value of Sparks and Swenson [28] and agrees



Vol. 47, 1974 Grüneisen Gamma of Some Cubic Crystals 713

with the value of Novikova [32] to within 15%. In indium antimonide, the calculated

yL value shows a negative trend when yL is considered to the third decimal. It is an
established experimental fact that at low temperatures T3 region) these semiconducting

materials germanium, silicon, gallium-arsenide and indium antimonide have a

range of negative values of gamma (y) which coincides with the region of negative
expansion coefficient. With a further decrease of the temperature these low y values
tend to be positive and ultimately the yL values become positive only. The negative
sign of the calculated fL value for InSb is, perhaps, indicative of the fact that there is a
low temperature region in which the thermal expansion becomes negative for this
semiconducting material. Also it appears that in these diamond structure semiconducting
materials, which have a strong covalent bonding, nearest-neighbour central interactions
play a predominant role.

Among the alkali halides, we may put NaCl and NaF in one group and KCl and
LiF in the second group in discussing their thermal behaviour. NaCl and NaF are the
normal alkali halides in the sense that the Grüneisen gamma decreases gradually with
decreasing temperature and the difference between the high and low temperature
limits is not abnormal. When a low y, is associated with a low stiffness mode, it would be

weighted very heavily according to the equation y 2 Qyj/2 Gt at low temperatures
but not at high temperatures. And the y would then be expected to fall at low
temperatures. This is precisely the situation for NaCl and NaF which have low y('s (some
of them are negative with small magnitudes) associated with low stiffness modes. As a
matter of fact, these two materials obey Barron's predictions and fit into the scheme
of a nearest-neighbour central-force model. Our calculated value of yL for NaF is

larger than the recently measured thermal value of White and Collins [52]. For NaF
there is no experimental data on yH. However, our calculated values are in line with the
calculated values of Brugger and Fritz [29] and of Bensch [42]. In NaCl, our values are
as much in good agreement with the experimental values as those calculated by others
(see Table III). In KCl the agreement between calculation and measurement is within
25%. More than this, we find that the difference between yH and yt for KCl is quite
large. This situation in KCl is similar to that in Rbl [50]. The values of y, for the
acoustic modes in the non-dispersive region obtained from the experimental TOE
constants in general vary with the type of normal mode vibration and this variation
with mode type is particularly wide in KCl. In this alkali halide, over most of the 9, p
range a very low value of yt is associated with the lowest velocity mode which is
determined principally by the elastic stiffness constant CM and (CM is small for KCl).
Indeed, in KCl the lowest velocity mode has a negative y( (with large magnitude) in
certain directions. Because the low velocity modes are heavily weighted at low
temperatures, we find for KCl that the averaged Grüneisen constants calculated from the
elastic data have the relation yL<^yB. A word about these negative mode Grüneisen
parameters for some of the TA modes of KCl and NaCl; a negative yTA indicates a
decrease in the stiffness of the lattice under compression predicting a first-order
transition [51]. It is well known that NaCl-type crystals undergo a pressure - induced
phase - transition to the CsCl structure and this fact is not obscured by our present
calculations. In LiF we find fL calculated is slightly greater than yH calculated and
both our yL and yH values are off from the measured values by 15% and 20% respectively.

The shear constant C44 has a large value for LiF and the lowest yt is associated
with this high stiffness mode and is not heavily weighted at low temperatures. So we
might expect the gamma to rise at low temperatures which is reflected in the computed
results for LiF where yL is greater than yH although by a small amount.
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In the alakaline-earth fluorides CaF2 and BaF2, the calculated fL values are in
good agreement with the measured yL values if one takes into account the errors
involved in these low temperature measurements. The elastic yH values for these two

u- 9 90°

3

2-

J^"^~
1

x,

5 10 15 20 25 30 35 40 45

Fi g da)

Figure la
Plot of xt pof2 versus <f, for KCl for 6 — 90°. Here X3 is the low shear-mode velocity.

0 90°4t

3-

-Vi

5 10/ 15 20 25 30 35 40 45/ )» —

Fig (1W

Figure lb
Plot of y, versus <f> for KCl for $ 90°. Here y3 is associated with X3.

fluorides are considerably different from the measured yH values. Our calculated
values, however, agree reasonably with the calculated values of Gerlich [13] (BaF2) and
those of Srinivasan [46] and of Wong and Schuele [45] (CaF2). In both CaF2 and BaF2
the disagreement for yH is much larger than for yL, the elastic y„ being lower than
than the thermal value. We may conclude that at high temperatures, in both CaF2 and
BaF2, the contributions of the optical modes to the y,'s become significant. Finally, as
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an example, the graphs of (Xt — p) and (yt — p) are given in Figures la and lb for
9 90° in KCl to show the negative values of y, associated with the low-velocity
transverse acoustic modes.
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