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The Bloch Equation at Low Temperatures

by W. R. Schneider

Brown Boveri Research Center, CH-5401 Baden, Switzerland

(9. IX. 75)

Abstract. The Bloch equation (linear Boltzmann equation for fermions) may be written as
Lxf go where Lx is a bounded self-adjoint operator and x the normalized inverse temperature.
For sufficiently large x the inverse of Lx exists and is bounded. This leads to the x5-law for the
electrical conductivity.

1. Introduction

Let AA be the Hilbert space of complex-valued functions on the reals with scalar
product

if,g)=jdyp(j)f(y)g(y) (1.1)

where the density p is given by

p(y) eV + I)"2 (2 cosh(jV2))-2 (1.2)

(integrals extend over M if not otherwise indicated). Define the Bloch operator Lx by

iLxf)iy) J dz6(x2 - z2)Ki(y, z){px2f(y) - (px2 - z2)f(y + z)} (1.3)

for all/e AA such that Lxfe 27A.

The kernels Kn(n e r\l) are given by

Kn(y, z) z2\ey + l){(ey+* + 1)|1 - e~'\}A (1.4)

d is the step function, p a positive constant and x'1 T/T0 the temperature
normalized with a suitable reference temperature T0.

The Bloch equation, i.e. the linearized Boltzmann equation for electrons (with
isotropic energy momentum dispersion) interacting with phonons reads now

Lxf=go (1.5)

with g0(y) 1 (this is equation (82) of [1] via the identification c pPxsf pQ 1).
Remark that g0 e AA with || g0 \\ 1.

Assuming existence and uniqueness of the solution/; of (1.5) the static electric
conductivity is given by

ct(jc) cxb(fx, g0) (1.6)

with a constant c independent of x.
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It will be shown that Lx is a bounded self-adjoint operator which has a bounded
inverse for sufficiently large x. Hence, the solution of (1.5) is given by fx L71g0.
Furthermore, LA has a limit as x tends to infinity. The corresponding limit of
(fx, go) is calculated explicitly, yielding

lim (fx, g0) (240£(5)) "* (1.7)
X-X30

where £ denotes Riemann's Zeta function. In view of (1.6) this means that the
conductivity behaves like jc5 for large x (T~s — law of Bloch [2]).

The proof of these assertions involves an intermediate step consisting of the
discussion of a simpler problem,

Mxf=g0 (1.8)

where Mx is obtained from (1.3) by omitting the step function. In Section 2 the
problems (1.8) and (1.5) are treated, whereas Section 3 is devoted to an extension of
(1.5) by including impurity scattering.

2. The Bloch Equation

Let j# denote the Hilbert space L2(U) with the usual scalar product. J^ and AA,

introduced in Section 1, are isomorphic via

f(y) (Uf)(y) Vpjy)f(y). (2.1)

To any operator O in AA corresponds ô 170 U'1 in 7$.
For n e H we define the operator Bn in AA by

iBnf)(y) J* dzKn(y, z)f(y + z) (2.2)

where Kn is given by (1.4). The corresponding operator Bn in $ is given by

Bnf=K*f (2.3)

(* denoting convolution) with

Kiy) ij21cscm>/2)|. (2.4)

By Young's inequality we have

114.1 < IIMi. (2-5)

Actually, equality holds in (2.5) due to the fact that bn is even and non-negative.
Evaluation of the r.h.s. of (2.5) yields

\\bn\\i 2(2n)l (22» + 1 - 1KO + 1). (2.6)

The operators Ên axe self-adjoint and their spectra are absolutely continuous as they
are unitarily equivalent to multiplication by real analytic functions.

In view of (1.3) we also introduce operators Bnx in AA:

(Bn,xf)(y) J" dz6(x2 - z2)Kn(y, z)f(y + z). (2.7)

They correspond to Bnx in 3^ which are defined as convolution with bn<x where

bnjy) e(x2 - y2)bn(y). (2.8)
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By arguments identical to those given above the operators Ên,x and Bn — Ên-X axe

self-adjoint, have absolutely continuous spectra and satisfy

liA-ll l*».*ii (2-9)

and

\\Bn - Ên,x\\ \K - bn,x\\i, (2.10)

respectively. A simple estimate shows that the r.h.s. of (2.10) vanishes exponentially
fast as x tends to infinity. Hence, we have

Lemma 1. Bn is the norm-limit of Ênx where Bn and ÊUyX are defined as
convolution by bn and bnyX, respectively, with bn and bn<x given by (2.4) and (2.8).

Let

a Big0 (2.11)

and

ax BUxg0. (2.12)

We define operators A and Ax by

(Af)(y) a(y)f(y) (2.13)

and similarly for Ax for those fe AA where the r.h.s. of (2.13) is in AA. As a and ax
are real A and Ax are self-adjoint.

The Bloch equation (1.5) with Lx given by (1.3) may now be written as

{px\Ax - BXJ + B2Jf g0 (2.14)

whereas the simplified Bloch equation (1.8) is obtained by dropping the index x on A,
5n,* in (2.14).

From (2.7) and (2.12) we obtain, after some manipulation
I*X

ax(y) 2 dzz2 tf)(y, z) cschz (2.15)
Jo

with

<p(y, z) (1 - tanh2(z/2) tanh2(j/2))"1. (2.16)

This leads to

ax(-y) ax(y) (2.17)

and

| ax(y) Ç dzz2ny, z)m<l>iz) (2-18)

with

fay) sinh(>>/2) sech3(j/2) (2.19)

i.e. (for jc > 0 as we shall always assume)

±ax(y)>0 foxy>0. (2.20)
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Hence, ax increases monotonically from

ax(Ö) 2 fJo
dzz2 csch z > 0 (2.21)

J o

to

a*(oo) f rfzz2 coth(z/2) (2.22)
Jo

as j varies from 0 to co. The limiting value (2.22) may be written as

a*(oo) (jc3/3) + 4£(3) - 2 f " <fez2<?-z(l - e'A1 (2.23)

where the last term decreases exponentially fast as x tends to infinity. Actually, ax(y)
becomes 'flat' at y x x for large jc as is seen from

ax(x) (jc3/3) - jc2 In 2 + (tt2jc/6) + 2.5£(3) + r(x)
where the remainder

r(x) [ dz(x - z)2(e» + l)"1 + e~x f dzz2(ez + e~x)-
Jx Jo

decreases exponentially fast as x tends to infinity. From (2.20)-(2.22) it follows that
Ax has an absolutely continuous spectrum consisting of the interval [ax(0), ax(co)],
i.e. Ax is bounded.

Now, a(y) and da(y)/dy axe obtained from (2.15) and (2.18), respectively, by
replacing the upper limit of integration by oo. Hence, (2.17) and (2.20) hold also for
a(y). It follows that a(y) increases monotonically from

a(0) 2 f dzz2 csch z 7£(3) (2.24)
Jo

to infinity. The spectrum of A is absolutely continuous and consists of the interval
[a(0), oo), i.e. A is unbounded. From (2.15) and (2.18) and their analogues for a(y) it
follows that

a(y) > axiy)
and

Tya(y) > jyax(y), y > 0,

whence

0 < aAy)-1 - a(y)-1 < ajco)-1. (2.25)

According to their spectral properties A and Ax have bounded inverses which satisfy
by (2.25)

JA-1 - AA\\ ax(cA)-\ (2.26)

As, in view of (2.23), the r.h.s. of (2.26) is 0(jc-3) for large jc we have

Lemma 2. A;1 converges in norm to A"1 where Axx and A'1 axe defined as

multiplication by ax(y)_1 and a(y)-1 with a and ax given by (2.11) and (2.12),
respectively.
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The following lemma concerns the combinations Ax — Blx and A — Bx which
occur in (2.14) and its simplified version. Remark that Ax — Bix is bounded and self-
adjoint whereas A - Bx is unbounded and self-adjoint on the domain D(A) of A.

Lemma 3. The operators Ax — Blx and A — Bx axe positive and zero is a simple
eigenvalue with eigenvector g0.

Proof. FoxfeJf

(iAx - Bi,x)f)(y) J dz6(x2 - (z - y)2)Kx(y, z - y){f(y) - f(z)} (2.27)

and

(/, (Ax - BXtX)f) i J dy j* dz6(x2 - (z - y)2)H(y, z)\f(y) - f(z)\2 (2.28)

with

H(y, z) iy- z)2{(ey + l)(e* + l)\e~y - e"\}-\ (2.29)

From (2.27) it follows that g0 is an eigenvector belonging to the eigenvalue zero
whereas (2.29) shows that g0 is simple and Ax — BXx positive. Dropping the
subscripts jc and the 0-functions in (2.27) and (2.28) and choosing / e D(A) yields the
proof for A — Bi.

Lemma 4. The operators Bn axe yi-compact.

Proof. This is equivalent with ,4-compactness of Ên. As b„ and 1/a belong to Ji?

we obtain

\\ÊnÂ'1\\HS= \\bn\\\\l/a\\,

i.e. ÊnÂ~1 is a Hilbert-Schmidt operator, hence compact.

Corollary. Let B be a finite real linear combination of {BA. The operator A + B
is self-adjoint on D(A) and its essential spectrum coincides with that of A, i.e.

o(A + B) ad(A + B)U (a(0), oo)

where a and ad denote spectrum and discrete spectrum (set of isolated eigenvalues of
finite multiplicity), respectively. The only possible accumulation point of crd is a(0).
Especially, zero is an isolated eigenvalue of A — Bx.

Proof. The statements of the corollary follow [3] from Lemma 4 (and Lemma 3).
Let p(X) denote the resolvent set of the operator X.

Lemma 5. For sufficiently large jc and arbitrary XeU.

zep(A - XBi) => z e p(Ax - XBX,X) (2.30)

and

norm-lim(z - Ax + X51>x)-1 (z - A + XBf)-1. (2.31)
Ä-+00

Proof. According to [3] it is sufficient to prove (2.31) for z i. Let

AX(X) (i-A + XBi)-1 - (i - Ax + XBiJ-1
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and Ax A^O). Repeated use of the resolvent equation yields

AX(X) Ax - X(i - Ax + XBi)-lBxAx - XAxBi(i - A + XBA1
+ X2(i - Ax + XBi)-1BiAxBx(i - A + XBA1
- X(i - Ax+ XBAKBi - Bi,x)(i - Ax + XBiJ-1

leading to the estimate

||A*(A)|| 4(1 + ||\Äi||)9||Ax|| + \\X(BX - BUx)\\-

Together with Lemma 1 and Lemma 2 the result follows.

Corollary. Zero is an isolated eigenvalue of Ax — BXx for jc sufficiently large.
Now, by (a trivial generalization of) Theorem 5 of [4]

{px2(Ax - BiiX) + BnJ-1 (go, B^go)-^ - kExFx(k)Gx (2.32)

where

Fx(k) f (xFxy (2.33)
n 0

with k"1 px2 and

Ex Sx- (go, B^goy^B^S,
Sx norm-lim(z - Ax + BitXy\P - I)

z-,0
I- X ~— "2 Xl--x

Gx (go, Bn^goy^P - I. (2.34)

P is the projector on the subspace spanned by g0. Similarly, we have

{px2(A - BA + B2}~1 (g0, B^-'P - kEF(k)G (2.35)

with the r.h.s. defined by formulae obtained from (2.33) and (2.34) by dropping the
subscript x. All operators on the r.h.s. of (2.32) and (2.35) are bounded and the latter
are the norm limits of the former. Hence, the series (2.33) converges absolutely for
jc > jc0 with jc0 suitably chosen.

From (2.32) it follows that the solution of equation (2.14) is given by

fx (go, B2,xgo)~1go - KExFx(K)Gxg0 (2.36)

leading to

lim (go,fx) (go, Brigo)-1 (2.37)
x-*to

with

(go, B2g0) 240^(5). (2.38)

Remark. The operators Ênx do not depend analytically on jc. They are norm
continuous but their derivatives È'nx are only strongly continuous. A simple calculation

yields

Ê'n,X K(x){Û(x) + Û(-x)} (2.39)

where ?7(jc) is the one-parameter group of translations,

(Ûix)f)(y)=f(y-x) (2.40)
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which is strongly but not norm continuous. However, g0 is an analytic vector of
Û(x), i.e. Û(x)g0 depends analytically on jc. Hence, the same is true for B„iXg0. This is a
first step towards answering the open question whether/,, (or at least (fx, g0)) depends
analytically on x. The case is diiferent for the solution of the simplified Bloch equation
where the analogue of (2.35) immediately exhibits analyticity in (jc0, oo] with px%

\\F\\-

3. The Modified Bloch Equation

If the electrons not only interact with phonons but also with randomly distributed
impurities the Bloch equation (1.5) has to be modified in the following way [5]:

LJ+ ccô^f= g0 (3.1)

where a0 is a positive constant (the constant c is the same as in equation (1.6)). If the
electron-phonon interaction is turned off (3.1) reduces to

caô1x5f= go (3.2)

with the solution

fx c-1o0x-5g0. (3.3)

Inserting (3.3) into (1.6) yields

ct(jc) <70, (3.4)

i.e. the conductivity becomes temperature independent if it is based only on impurity
scattering. Setting

h coô V/ (3.5)

in (3.1) and (1.6) leads to

(c-^oX-SL, + I)h go (3.6)

and

ct(jc) o0(h, g0). (3.7)

Equation (3.6) may be written as (compare with equation (2.14))

(Cx + c-^ox'^jh g0 (3.8)

where

CX I+ c-^oPX-^A, - BUx) (3.9)

is a positive bounded operator with lower bound 1 which is a simple eigenvalue and
go the associated eigenvector (Lemma 3). For sufficiently large x this eigenvalue is
isolated (Corollary to Lemma 5). Hence, || Cx 11| ^ 1 for all x > 0. As Cx 1g0 g0 we
obtain from (3.8)

(/ + c - ^ojc- 5Cr ^Jh g0. (3.10)

The operator CAB2iX is uniformly bounded by \B2\. Therefore, (3.10) may be solved
by the Neumann series for sufficiently large jc (e.g. x5 > c_1ct0||-S2||):

CO

h go + 2 i-c-^ox-scABo^ygo. (3.11)
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Inserting (3.11) into (3.7) yields

ct(jc) ct0{1 - c-^ojc-^jjo, B2xgo) + s(x)} (3.12)

with
ro

<x) y i-Aoox-sy^icAB^ygo) (3.13)

which is 0(jc-10) as jc -> co. Introducing the resistivity p(jc) l/tr(jc) we get

p(x) Po + Piix) + p2ix) (3.14)

where p0 1/ct0 is the impurity resistivity, /^(jc) the phonon resistivity given by (1.6)
and (2.35) and p2(x) the so-called deviation from Matthiessen's rule. From (2.35) and
(3.12H3.14) it follows that p2(jc) 0(jc-7) as x -> co.
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