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The regular external field problem in
quantum electrodynamics1)

by M. Klaus and G. Scharf
Institut für Theoretische Physik der Universität Zürich, Schönberggasse 9,

CH-8001 Zürich, Switzerland

(2.VII.1977)

Abstract. The quantized electron-positron field in interaction with an external classical static
electromagnetic field is considered. The external potential is restricted in such a way that a dressed vacuum
and dressed electron-positron states exist in Fock space. In this case the Furry picture has a mathematically
well-defined meaning. A large class of such regular external fields is found which, however, contains no
static magnetic field.

1. Introduction

One of the simplest systems of quantum electrodynamics is the quantized
electron-positron field interacting with an external classical electromegnetic field.
Although the physics of this system is well understood and rather simple, the
mathematical character of the theory is not at all trivial and requires a careful investigation.

We will consider the system described by the formal Hamiltonian

formal \d3x:il/ + (x,t)(- i £«k^L + mß + eV(x)\il/(x,t): (1.1)

where ip(x, t) is the electron-positron field operator satisfying equal-time Fermi
anti-commutation relations

{ipa(x, t), i/,+(x', t)}+ ôahô(x-x'); a,b=l,...,A (1.2)

with all other anticommutators vanishing. IHformal (1.1) as it stands is not a well-defined
operator in Fock space. Nevertheless, the Heisenberg equation of motion derived
from (1.1)

dé(x,t) ' 8 \
-^g— -'f-«' 5X w + mß + eV(x)\ ip(x, t) (1.3)

makes sense and is immediately solved by

Uf, t) Wmf)- (1.4)

Here

Hf, t) [d3xfa(x)*ipa(x, t),fa e L2(U3) (1.5)

') Work supported by the Swiss National Science Foundation.
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is the spacially smeared out field operator and

Hf) Hf,o) (1.6)

is the initial value at time t — 0, His the one-particle Dirac operator in (L2(IR3))4.
We are now interested in the question whether there exists a selfadjoint Hamiltonian

HI in Fock space (some renormalized version of (1.1)) which generates the time
evolution automorphism (1.4) as an inner automorphism

ip(eiHtf) emtxp(f)e-mt. (1.7)

It has been shown by Bongaarts [1] that HI exists if and only if
P°+e-iHtP°_ eH.S. (1.8)

is a Hilbert-Schmidt operator (H.S.) in (L2 (U3))4 for all t, where P°± are the projection
operators on the positive and negative part of the spectrum of the free Dirac operator
H0, respectively (see next section). This condition can be satisfied probably only with
scalar potentials (see Section 4). For this reason, we have restricted ourselves to
scalar external potentials from the very beginning (1.1). Bongaarts gives no
construction of the renormalized Hamiltonian H. On the other hand, Friedrichs [2] long
ago constructed such a HI under the conditions

P+P°_eH.S., P°+P_ eH.S. (1.9)

where P± are now the projections on the positive and negative spectral part of the
Dirac operator //with potential. The conditions (1.9) imply (1.8), and if (1.9) holds
the method of Friedrichs gives a very simple construction of the renormalized
Hamiltonian H. Very likely the conditions (1.8) and (1.9) are actually equivalent. We
have proven this at the moment only for a restricted class of external potentials.

The condition (1.9), or the equivalent one

P+ - P°+ eH.S. (1.10)

has the more direct physical meaning. It guarantees the existence of a dressed vacuum
and dressed electron-positron states in Fock space, that means, the Furry picture is

mathematically well-defined. This will be discussed in Section 3. Most results of this
section have been obtained by several authors [2, 3, 4, 5], so that our contribution is

merely the clarification of some details and certain simplifications of the proofs. In
Section 4, we discuss the class of regular potentials which is defined by the property
that condition (1.10) is fulfilled. Our characterization of this class is not complete
in the sense that we do not know the most general condition on the potential implying
(1.10). The physical consequences of these results are discussed in the following
section. It turns out that the existence of the dressed states enables one to construct
the renormalized Hamiltonian and charge density operators and give a rigorous
discussion of the vacuum polarization.

2. Preliminaries

The free Dirac operator
3 8 „ /0 ak\ „ /1 0

H^-iZa^ + mß, a, ^ o'j, ß (Q _J (2.1)
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gives rise to a self-adjoint operator in (L2(IR3))4. Its spectral decomposition is most
conveniently described in terms of the (generalized) eigenfunctions

M°(p, x) n,(p) e'«", üs°(p, x) vs(p) e-** s + 1

where

«s(p)

».(P)

E + m
Xs

«r p

2E \E + ml

E + m I ff-p \
2E E + m]

\ Xs /

X+ Q' X- (j)> E + Vp2 + m2.

They satisfy

H0u°s(V,x) Eu°(p,x)

H0v°s(j>,x)= -Ev°s(j>,x)
and the orthogonality relations

"s(p)+Mp) ôss. vs(p)+vs.(p)

«s(p)+*v(- p) ^(p)+«s-(- P) 0.

ForanyO(x)e(L2)4let

$ + (p,s) (27t)-3/2 l.i.m. j J3xws°(p,x) + <D(x)

$_(p,s) (2tt)-3/2 l.i.m. L3xt;s0(p,x)+O(x).

Then the spectral projection P° (Q) for a Borei set

Q c (-co, m] u [w, +00)
is given by

(/>0(Q)(D)(x) (2tt)-3/2 l.i.m. JVS>+(p,sK°(p,x)
L Jfi +

+ cPp&Yv, s)v°(p, x)

where

n± {peR3|± iï(p)efl}.
In particular, we have the eigenfunction expansion

<D(x) (271)"3/2 l.i.m. fd3pt$+(fi, s)u°(p, x) + <D_(p, s)v°(j>, x)]

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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which defines a unitary transformation of (L2 )4 onto itself, completely analogous to
the Fourier transformation in ordinary L2. The first member on the right-hand side
of (2.11) is the projection /"+0 on the electron subspace, the second member P20
on the positron subspace.

Similar results are true for the Dirac operator

H H0+ V(x) (2.12)

for a large class of static scalar potentials which contains the class of potentials we
are going to consider in the following. Also in this case, the spectral projections
P(Q) can be expressed in terms of eigenfunctions ws(p, x), vs(p, x) as (2.9) [6], with
the only difference that in addition to the continuous spectrum (2.8) there are in
general discrete eigenvalues, and we have no explicit expression for the eigenfunctions
like (2.3). The Fourier transform analogous to (2.11) reads

<D(x) (27T)-3'2 l.i.m. dptè+ (p, s)us(p, x) + $_ (p, *K(p, x)] (2.13)

where \dp is a short notation for \d3p and a possible sum over the discrete
eigenvalues.

Let us now construct the Fock space J5" using

I)! =(L2(U3))4

as the one-particle subspace. To have a concise notation we write

P (P, s, e)

where e ± 1 distinguishes the electron and positron subspaces (2.7). The «-particle
subspace hn then consists of functions <^n(p1 ¦ ¦ -p„) e ((L2)4)®", antisymmetric in the
arguments pj (pj, Sj, eX t)n contains electron and positron states together, only the
total number of particles ri) is specified. The Fock space SF then is

00

P SI),,
n 0

with h0 C.

The symbolic absorption and emission operators are given by

(es(p)0)>s- • p„) Jn+ 1<5„+I(p, s,\;ps- ¦ p„)

(ds(j>)®)n(Ps- ¦ -Pn) y/" + l^+iCP,*, -1;/V • -Pn)

(Kmx(ps- ¦ -pn) -Tzi (-y_1% - P;)<MSEJ
v " j= 1

®n-i(P,---WjfyPn)

(.d;m)„(Ps- ¦ -pj -rzi (-y_1«5(p - p,)V-ie,
V " j l

®«-l(Ps-tjfijtfPn)
(2.14)
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where the crossed out arguments/^. have to be omitted. \if(x) e (L2)4 is in P° t^ then

b(f+) [d3pf+(p, s)*bs(p)

(2.15)b+(f+) j d3pf+(j>,s)b:(p) b(f+r

are well-defined (even bounded) operators in J* :

(b(f+m„(Ps- ¦ Pn) sfr~+~~l ld3pf+(j>, s)*<!>n+1(j>, s,l,...)

(b+(f+yt»„(ps--PH) -f- t i-y-^ujf+tofiSj)
V " j= 1

®n-i(Ps--WyPn) (2.16)

and similarly for

rf+(/-)=U/-(p,«)*rf!+(p)

«/(/_) pV/-(P^K(p).
They satisfy the anti-commutation rules

{b(f+),b+(g+)}+ =(f+,g+)
{d + (f.),d(g_)}+ (f_,g_).

with all other anti-commutators vanishing.
The field operators smeared out in space are defined by

xP(/)= b(f+)+d+(f-)
*r+(/) b+(f+) + d(f_)

which corresponds to the formal expressions

*(/) d3xfa*(x)Va(x)

¥(*) (27i)-3/2 d3p[u°,(p, x)bs(p) + »?(p, xK+ (p)].

(2.17)

(2.18)

(2.19)

(2.20)

3. The dressed electron-positron states

Let

Ih=t>r0I)o_, I)0± jP£î)i (3.1)

be the decomposition of i)1 into the electron and positron subspaces defined by the
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free Dirac operator H0 and similarly let

I),=l)+©ï,_, 1)±=jP±1>1 (3.2)

be the decomposition defined by the positive and negative spectral parts of H (2.12).
We call \)± the dressed electron and positron subspaces, respectively, b+ are the bare
electron and positron subspaces. For/(x) e b+ we now define the dressed emission
and absorption operators by

b'(f+) b(pff) + d+ (PJ)
b' + (f+) b'(f+)+ (3.3)

and similarly for/(x) ei)_
d' + (f-) b(P\f) + dYP^-f)

d'(jY) d' + (f_)Y (3.4)

where /+(p, s) e Ç± is the Fourier-Dirac transform of/(2.13) defined by H. From
(2.18) we get canonical anti-commutation rules for the dressed operators

{b'(J+),b'+(g+)} (f+,g+)
{d'+(f-),d'(g-)} (f-,9-) (3.5)

and from (2.19) the decomposition of the field operators ¥(/) for arbitrary
f(x)e(L2)4

b'(h) + d'+(f_) b(pff) + d+ (PÎf) ¥(/). (3.6)

As in the case of free fields (2.20), the dressed operators can be expressed in terms of
operator-valued distributions b's(p), d's(p) etc.

It is convenient, for what follows, to write the linear transformation (3.3), (3.4)
in matrix notation. Let <p{(p,s), cpk_(p,s) be a complete orthonormal system in
Ê)

± and (pJ0 + (p, s), <pk0
_ (p, s) in b + respectively (which are all separable Hilbert spaces).

Introducing

b'j b'(cpi), dY=d'+((pk_) (3.7)

and similarly for the bare operators, we can write (3.3), (3.4) as follows

b] (<PÌ ,(pU)bk + (q>\ cpk0_)dk+

d'.; (<pi q>%+)bk + (cpL <pko-)dkY (3.8)

The anti-commutation rules (3.4) take the familiar form

{bj,bY} ôjk, [d]Ydk\} ôjk

and 0 otherwise. The matrix

v+,ró+) (<pj;,<P*o-)\def lWi W2

[((p*. cpk0+ ((pi cpk0_ )j \W3 WAj
occurring in (3.8) can be considered as a unitary operator in i)1. This follows from the
properties

w, w\ + w2 wi 1 w3 wi + Wt wi 1

W1 Wl + W2 WX 0 W\W2+ Wl W4 0, (3.10)

"-i;:;"7 i;:r:i-'i i <w>
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and we have the additional relations

w\ wx + wx w3 i w+2w2 + wx w4 i. (3.11)

Here Wt,..., WA are considered as transformations on the following subspaces

W^% Ç+ W2:%°_ > b +

W3:%% > i>_ W4:%1 >Ç_. (3.12)

These mappings can be trivially extended to the whole of t)t. Omitting
~ and

~
from

now on, because only the />space is used in the further discussion, we have

WJ= (<p{,cpko+)((pk0+J)<PÌ (<PÌ,P°+f)<p{ =P+P°+f
W2f= (<pi, q>\ _ )(<pk0 _, f)<p\ =P+P°.f
WJ= (cpi,cpk0+)(<pk0+,f)<pi P-Kf
WJ (cpi, q>%_ )(cpk_ ,f)cpf P_ P°_f, fe \, (3.13)

where the bar denotes the extended transformations on bj.
It is of central importance to know whether there exists a dressed vacuum Q',

that is a vector Q' e J5" satisfying

b'jQ' v (3.14)

d;nr v (3.15)

for ally. If there exists a unique Q', then the dressed electron-positron operators
realize a Fock representation of the anti-commutation relations (3.5). Consequently,
there must exist a unitary dressing transformation U relating the dressed and bare
operators

b'j UbjU-1, d] Udjlf-1. (3.16)

If Q' does not exist, the representation is inequivalent to the Fock representation.
We call the first possibility 'regular' and the second 'singular', and we are going to
discuss the regular case in detail.

Let us expand Q' into bare states
OD

"'= E E ^...Pmqi...qX,-bt,d;i...dlQ. (3.17)
m,11=0 pi<- • •<Pm

8l<--<«n
Inserting this expression into (3.14) and using (3.8), we get the following recursion
relation

Y.(9P+,<PPo\)A mn
PoPl'

V (~ }m~1+k(m" m* \ Am- l.n-l
k=l (3.18)

m 1, 2, ...,« 0, 1, 2,...
where the coefficients A satisfy

Am,-1 A-l,n Q

\\Q'f=Y £ |^»..J2<oo. (3.19)
m,npi < •¦¦ <pm

qi< ••¦ <qn
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Forming the absolute square of both sides of (3.18) and summing over/? and ^x, all
terms on the left-hand side are finite because of (3.19). The same is obviously true for
all terms on the right-hand side except the first one where the summation index qy
does not appear under the indices of Am-"~1. This leads to the necessary condition

p«i

For a non-trivial solution some Am~1'n~1 must be different from 0, consequently

Zl«,<Po-)l2 II ^2 Uns < °° (3-20)

that means

W2 P+ P°_ e H.S. (3.21)

must be a Hilbert Schmidt operator (H.S.). From the equation (3.15) we obtain in
the same way the recursion relation

i^r-^fo-fc-,^-.^-)
«0

m

— — \ _\m-l+k Am- l, n-1 lnpk q\
fc=l

m 0, 1,2,...,« 1,2,... (3.22)

and the second necessary condition

WX P_P°+e H.S. or W3 P%P_e H.S. (3.23)

It follows from (3.23) that W3 + W3 is a positive trace-class operator.
Consequently the kernel n of

wx w1 i - wx w3

n Ker WX Wx {fe l>° | Wt Wxf=0} Ker Wx (3.24)

is finite-dimensional.
We first consider the case n 0 (a 'weak' Bogoliubov transformation in the

terminology of Labonté [5]). Then Wx is bounded away from 0

ll^i/11 >e|l/L e>0 (3.25)

so that there exists a bounded inverse Wx~1. A solution of the recursion relation (3.18)
is now given by

A00 I (3.26)

Kq -W;1)pk(W2)kq=tApq (3.27)

Anp:...q„ i:(-rApiqKX---APnqnn (3.28)
n

where the sum runs over all permutations % of the symmetric group Sn. Other solutions
of (3.17) are obtained by choosing, instead of (3.26), different initial conditions,
namely

Am°° # 0 for some mQ 1,2,..., (3.29)
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or
A0m * 0 for some «0 1,2,.... (3.30)

The general solution is a linear combination of those solutions. If Wx
1 exists, it

follows from (3.18) for « 0, m m0 that the first possibility (3.29) is excluded.
This leads to the following expression for the dressed vacuum

a'-{i+ìMv«Kd'}¥ <33l)

where 0 is an arbitrary Fock vector containing only bare positrons.
We must still take the second recursion relation (3.22) into account. Now it

follows from (3.21) that the kernel n' of

w; wA i - wx w2

n' Ker W? WA Ker WA (3.32)

is finite-dimensional. Let us first assume n ' 0. Then W£ has a bounded right-
inverse and consequently (3.22) is solved by

A00 1

a\\ (wX)pk(w;-1)kq Apq

A"p1qn i:(-rApiqnix...xAMnn, (3.33)
71

which is consistent with (3.27) because of (3.10). Furthermore, it follows from (3.22),
for w 0, that a different initial condition of the form (3.30) is excluded, that means
O in (3.31) must be the bare vacuum

expfcA„b;dAci (3.34)

We have still to check whether Q' has a finite norm. This is best done with the
original expression (3.17)

00

Q' n+ £ I K-)"^ x •¦• x Ap„qnibX---bXnd:,---dXß
n= 1 pi < • • ¦ <pn x

q\<- ¦•<qn
oo

Q+Z E det(Apjqk)b;i...dqX,Q,
n=l pi <¦ ¦ ¦ <p„

where the determinant is formed by the « x « elements APiqn,..., APn9l.
Then we get

00

in'll2 1 + I E Idet(^9k)|2.
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The determinants are transformed as follows

IIQ'II2 1 + E E detO^Xdet^)
n Pl<---<Pn

«l<-..<«n

1 + E E àJÌApjqA*\
n pi<---<p„ \1=1 /

«1 <•••<«*

1 + E E Ê det (APjquA*kq:k)
n Pi<- ¦ ¦ < Pn il" " 'ln= 1

«i<"<«n
1 + E E det(Apj9jA*Mj)

n pi<---<Pn
qi qn

1 + £ X det(^)ptPj det(l + A+A).
n pi<---<p„

(3.35)

This is finite because A+A is a trace class operator.
Let us now consider the general situation

dim n N dim n' JV'

where JV and N' are finite. We have the direct decomposition

b° Ker Wx © Ran W? n © Ran W+ (3.36)

both subspaces being closed invariant subspaces for Wj+ Wx and W^3+ W3. That
Ran WX Ran P°P+ is closed follows from the fact that the operator P° as a mapping

from b+ to b° obeys ||P°/|| > 6\\f\\ for some Ò >0 and all/eh+ n(Ker PF+)1,
which is a simple consequence of (3.21). Since/e Ker Wx implies both P+f fand
P_f /and the same is true for Ker W^', it follows

Ker Wx Ker W? n b_ n b° (3.37)

Consequently, we have the following direct decomposition of b_

b_ n©Ran W4. (3.38)

Applying the same arguments to b° and \) + we get

b+ n'©Ran Wx (3.39)

n' l)+ n J)°_ (3.40)

We choose now the basis vectors (pJ0± in l)°± and tpJ± in b+ in such a way that

n=W+,-.-K+}, ^+ =<pk_,k= i,...N (3.41)

n' {9»i_,.--^'_}, <p*_ =q>\,k= \,...N'. (3.42)

The transformation (3.8) then assumes the following form

b'j d; j= U...N' (3.43)
CO OO

bj= I »?** + X ^M+. J N'+ I,---« (3.44)
fc iV+l k JV'+l

j;+ è;., ;= 1....JV (3.45)
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00 00

d'j+ E W*bk+ £ WlkdkY j N+ I,...«. (3.46)
k N+l k N' + l

Since Wx and WA are invertible on n'1 Ran Wx and nx Ran WA, respectively,
the vacuum for (3.44) and (3.45) is of the form (3.31)

ß'= exp (£^mô; <//)<!>. (3.47)
\pq /

Here Apq is given by (3.27) or (3.33) using for Wx_1 or WX'1 the restricted inverse
operators defined on Ran Wx or Ran WX, respectively, and <b is an arbitrary vector
containing only bare electrons and positrons from n and n'. In order to satisfy
(3.14), (3.15) for the remaining operators (3.43), (3.45), <I> must be of the form

<D bX---bXdX---d+a (3.48)

Consequently, the dressed vacuum (3.47) is uniquely determined (up to normalization).

Summing up, we have shown that the conditions (3.21), (3.23) are necessary
and sufficient for the existence of a unique dressed vacuum, or equivalently, for the
dressed electron-positron operators forming a Fock representation. This answers a
question raised in Reference [7]. IfN # N', the dressed vacuum Q' becomes charged.
This interesting phenomenon occurs in strong fields and is discussed in the following
paper.

In the rest of this section, we will construct the unitary dressing transformation
i/(3.16) explicitly. This has been done for Bose fields by Friedrichs [2]. The result in
the Fermi case was given by Labonté [5] without proof. We shall prove it by very
simple Fock space methods. U maps bare states

on the corresponding dressed states

®mn ftfnn ««C"- «C Kt ¦ • • KIM (3.50)

where Q' is the normalized vacuum from now on. On the bare vacuum Q, U operates
as follows

Q' C0bt---bXdX---dX,eAiCl (3.51)

where

A, lApqbXdX (3.52)
pq

and the normalization factor C0 is given by (3.35).
On the one-electron states q > N we have

(00
« \I W?*bX + E Wf*dk C0bt ¦ ¦ -d+ e^ß

fc N+l fc N'+l /
oo

C0bX ¦ ¦ -d+(-)N+N' eAl X W**K ß

+ c0bt¦¦¦dX(-)N+N¦ E w!k*tdk,eAqa
k N' + l (3.53)
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We note that exp Ax is bounded on the vectors 3>m„ (3.49)

||^'OmJ|2<expXl^M|2, (3.54)
pq

which justifies the manipulations in (3.53) and in the following. Since
GO

ldk,e^]=eA^dk,Ax]= -^ £ ApkbX, (3.55)
p-N+l

we get

bq+Q' C0bX---drX,(-)»+N'eA>
OO / GO \

x E (wy*- X wik*Apk)bXbq.bXa. (3.56)
pq'=N+ 1 \ k N'+l /

Writing

B ± (^+ - AWX\mWi ± (WX + W-'W2 WX) ± W'1 (3.57)

+ for N + N1 even, - for N + N' odd.

U operates on the one-electron states (j > N) as

pq

and on the vacuum Q and the one-electron states simultaneously as

C0bX ¦ ¦ <, e* jn + E (ÄM - «„)*;*,}• (3.59)
I pq J

By induction, we obtain on arbitrary electron states (j > N)

Ux=C0bt---dYe^Ì^ £ (Bpiqi-ôpiJ---
„ o "• p,...pn

qi-q*
iKqn~àpnJbXi...bXnbqn...bqì

CoôJ .d+ e** :exp J] (Bpq - bpq)bXbq.. (3.60)
p«

Now we add positrons (j > N')

/ 00 00 \
<+ n *rß' e »T6p + e **r< t/t n Vß

ft \p JV+l p=l / k

f/1(-f + A'' E »T*p+ E wf\Bp.p-ôp,p)bp
p N+l pp'=N+l

+ £ wfAp,dX + E f*r<
p JV+l p N'+l

nvß
* (3.61)
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Introducing on Ran WA the matrix operators

c= +(aw3 + wYLaWA ± (Wx'wxw3 + wj + wx1*

D= ±(W3Bf ±(W3WX1Y,
+ if AT + N' even, -ifN + N' odd, (3.62)

U operates on the states (3.61) as

U1l(Cpqdp+dq + Dpqbpdq), (3.63)
pq

and combined with pure electron states (q > N) as

Ux (l + E KCM - ôpq) d; dq + Dpqbpdq]\. (3.64)
(- pq J

Adding successively further positrons, we get

U2 Ux :exp E [(C„ - Spq) dp+ dq + Dpqbpdq] :

pq

Ux : exp E (Cpq - SJ dp+ dq exp E Dpqbpdq :

p« pq

C0bX... d+ exp E ApqbX dq+ :exp E (*„ - öpq)bX bq :

P4 pq

:expE(Cp4 - «5M)<<:expE^èp^. (3-65)

Finally, we have to include the finitely many exceptional states p < N
respectively q < N'. Since, including these states, the above construction does not
change, it is sufficient to consider a typical example :

d?Q' E wfbkc0bX.. XdX.. .<# ^a
k=l

c0^> E wf(-)k-1bt...i/>x...bXdX...dX.ci
k l

C0 e*> E E »T - r1 *x+ • • • K - - - bX dxY.. d + dq.dq+Q
p=i «' i

C0e*> E Wt'i-y+r-1 :bX .dq,.. .bXdx+ .d+ :dq+Cl. (3.66)
pq'

From this, the general form of the factor U0 transforming the exceptional states is
obvious

U0 :{bX + E W?d^.. .{bX + E W?d}j

x (dX + E W^b}}.. .(dX, + E Wf*b)j :

iiN+N' even, + if N + N' odd. (3.67)
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Then we have the following final result for the dressing transformation U

U=C0U0 exp E ApqbXd; :exp E (Bpq - ôpq)bXbq :

pq pq

:exp E (Cpq - *pq)d; dq :exp E Dpqbpdq. (3.68)
pq pq

Since after construction, C/maps the basis of bare states (3.49) on the basis of dressed
states (3.50), it extends to a unitary transformation on all of /F. The result (3.68) is in
normal ordered form.2) The normal ordered exponentials can be transformed into
ordinary exponentials by means of the following lemma, which may be of its own
interest.

Lemma. Let H (Hpq) be a matrix operator and

H=Y.HpqbXbq
pq'

¦pq"p "q-
pq

Then

00 1

exp «// 1 + E - E (e*" - Dpl4l- • -(e"H ~ l)P„q„
"=1 n-pvpn

qvqn
XÒ+ ..A+A...A. (3.69)

p n- - - pi «i ' ' " qn

Proof We show that the right-hand side of (3.69) satisfies the differential equation

Ji çzHjj (3 70)
da.

00 1

exHH I - E (e*H - D,itl. • -(e" " 1 W"p„+l8„+1
n 0 "pr-Pn+l

This we have to order normally

E i E E (-r-fe- - D,lfl.-•(**" - iu Hqmqn+i...
n Pi- ¦ -Pn m= 1

b;n---bXK---hm---bqbq^

" ¦ Pl- ¦ -Pn+ 1

*K~~Kb«-K^
li E É(-r-"---(^^)pmï„+,

«'n pi...p„ m=l
gl. <m feti Kn-KK---hm---bqbq^

2) A somewhat different normal ordered form of U was recently given by S. N. M. Ruijsenaars [13].
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-E-J, E TJ(-r-"...(e^-i)Pmqm...HPmq^
ft Pl---Pn wi

qi.. ,4m- • -4n+l

« ' 'Pl...Pn+l
«1- ¦ -8n+ 1

x bX ...bXba...baPn+l Pl «1 «>,+ l

XLe«H_YXL y <e*H _ i\ / „h _ d H
da «l lW'"^ l,pn^n-inpnqn

n • pi.. .p„
«i-..«m

j ^¦¦¦*fc
+ E^ E (^-i)PI81...(^-Dp„,A„+1?„+1i!

n '*• pi...Pn + l
41.. -«n+1

x bX ...baPn+i q

Since the last two members cancel, the lemma is proved.
According to the lemma we have

CO }
:expE(SM - opq)bXbq: !+£-(*- l)fifi...

pq n 1 " •

V - \)Piqj>Xn-¦ KK-¦-K
^V^B'pqbXbq

pq

where B' is given by

(«*)„ *„¦ (3.71)

Then the dressing transformation (3.68) can be written as follows

u c0u0 exp e 4,,*;rf,+ exp e *;/;*,
p« pq

™PZC'pqdp+dqexpYjDpqbpdq (3.72)
P« P8

with B'pq, C'pq determined by

(e~B')pq (B-%q (Wx)pq (e-c')pq (C-1^ (WA)%. (3.73)

This is essentially the form of U given by Labonté [5].

4. Regular External Fields

In this section, we investigate under what assumptions on the external fields the
fundamental conditions (3.21) (3.23)

P+P°_ eH.S. P°P_ e H.S. (4.1)
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are satisfied. Both conditions (4.1) are equivalent to the single condition

P+ - P°+e H.S. (4.2)

In fact, condition (3.2) implies

P_ - P°_ eH.S.

and

P+PÌ (P+ - Pl)P- eH.S.

P%P- P+(P- - ^-)eH.S.
Conversely, it follows from (4.1) that

P_ Pi e H.S.

and

P+PÌ -P.P% P+P- - (1 - P+)P+ P+ - P%e H.S.

The projection operators in (4.2) are conveniently expressed in terms of the
resolvent

R(z) (H-z)~1 (A.3)

as follows [8, p. 359]

1 1 f+cc

P+=2 + 2^J R{in)dn- (4-4)

We assume that 0 is not an eigenvalue of H, otherwise one must agree upon some
convention for the definition of P+ ; we return to this problem later on in the discussion

of strong fields (see next paper Section 3). Then R(z) is bounded for all z in
and the integral (4.4) is (at least) strongly convergent. Writing

H H0+ V, (4.5)

we have for the resolvent (4.3) the formal equation

R R0 - R0VR0 + R0VR0VR0(1 + VR^1 (4.6)

Rq + Rx + R2

where

R0(z) (H0-z)-1. (4.7)

Then we have to consider

P°++ 2%

At first let us look at

1

dr\(Rx + R2). (4.8)

e'=2„
+ 00

dnRYin) (4.9)
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in the case of a scalar potential V(x). This operator Qx acts in/>space as an integral
operator

(4.10)(ßi/Xp) J d3qQx(p, q)/(q)

with the kernel

^ x ,„ s s/4> f «-P + tnß + in aq + mß + in
ß,(p, q) =- -(2tt)-5'2 j d« -J! fl v(j> - q)~

pz + «r + ?f q^ + m2 + n2

/•<> x-5/2 KP - q)/a-p + w^a-q + mjS
— (27t) '71 — — | .-.

1

Writing

ap + m/3

^p + ^,

1 - 2jP°_(p) jP°+(p) - P°-(P)

(4.11)

(4.12)

and using the fact that P+ (p) are projection operators in C4, we obtain for the
Hilbert-Schmidt norm of Qx

(2n)-3 f.

d3p \d3qSpQ1(P,qyQl(p,q)

d3p d*q~—M' SplP°+(q)P°_(p) + P°(q)P°+(j>)]

2(2n)-

def

d3p

(EP + Eq)2

3J^(p-q)l2
d3q 1 - pq 4- nr

EpEq(Ep + Eq)2

2(27t)-3|||F|||2 (4.13)

where the trace and the adjoint are taken in C4.
We are now looking for potentials v*(p) with a finite norm |||F|||0 (4.13).

Introducing the variables of integration

Pi p - q p2 p + q>

we can write (4.13) as follows

d3PxA(px)\V(px)\2,

(AAA)

(4.15)

where the function A(px) can be expressed in terms of complete elliptic integrals of
the first and second kind, K(k) and E(k),

K(k) (32m4

(4.16)

A(px) const •;—, i

\yJp2 + Am2\3p2 3

P IPtlk
Pl

p\ + Am2
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(details are given in the Appendix). Expanding (4.16) ïor px —* oo &nd px —* 0, we
find

A(px) ~ px for/?! ->• oo

A(px)~p\ for/7^0 (4.17)

which leads to the conditions

d3pp\V(p)\2 < oo (4.18)
IpIS"

d3pp2\V(p)\2 < oo (4.19)
IpN«

for some finite a > 0. That means K(p) can be decomposed into

V(V) Vx(jX) + V2(V) (4.20)

with

supp Vx c {|p| > a), supp V2 c {|p| < a}

and Fj, F2 satisfying (4.18) and (4.19) respectively. We shall denote this class of
potentials V(x) by

V(x)e(L\l2 + L\))(U3) (4.21)

according to current terminology [9].
Let us next show the self-adjointness of H on D(H0) for this class of potentials

(4.21). Owing to the well-known theorem of Kato [8, p. 377], it is sufficient to prove
that V is H0 — bounded, that means an estimate of the form

11*71 < a\\H0f\\ + OH/11, feD(H0) (4.22)

holds with a < 1. This is trivial for V2, because it follows from (4.19) that V2 e Ü (R3)
and V2 e C°(U3), hence

ll^/H < ||K3IUI/|| <\\V2\\x\\f\\. (4.23)

For Vx e L2/2(R3) more refined estimates are necessary. In this case ^(x) can be
expressed as a convolution of the Bessel potential

fco / f2\3/4
Gx/2(x) const e"|x| e~t|x| / + -) dt (4.24)

with an L2 — function wx (x) [9]
Vx Gxl2*wx. (4.25)

Then, since

\Gll2(x)\ < constar5'2,

it follows from the generalized (weak) Young inequality [10, p. 32]

libila < \\Gll2\\6l5tW\\wx\\2 < const\\\x\-5l2\\6l5!Jwx\\2
that

F1(x)eL3(R3). (4.26)
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This implies by Holder's and Sobolev's inequalities [10, p. 113]

ll^t/ll < Il K,

Using

||31|/||6< const|| K, ||3 E
7=1

11
dXj

ll#o/n2=E
j

df
dXj

2

+ ™2|l/||2,

it follows

\\Vxf\\2 <coiist || ^11.131
j

df
dXj

2

< const|| Vx \\21|H0f ||2.

This proves (4.22), because || Vx ||3 can be made arbitrarily small by choosing the
decomposition of V (4.20) appropriately. By a slight extension of these arguments
[11], it can even be proved that Fis //„-compact, that means

V(H0 — A)-1 is compact (4.27)

for every A not in the spectrum of H0. This has the important consequence that H
has the same essential spectrum as H0, i.e. — oo, — m] u \m, + oo). Then, in the
interval (—m, m) H has only isolated eigenvalues of finite multiplicity. Furthermore,
it is possible to define generalized eigenfunctions w(p, x) and to prove the eigen-
function expansions mentioned in Section 1 [6].

Now we have to consider the remaining term in (4.8)

02
1

2n
dr\R2(in), (4.28)

where

R2 R0VR0VR0(l + Fi?,,)-1. (4.29)

We have not succeeded in proving that Q2 is a Hilbert-Schmidt operator for the whole
class ofpotentials (4.21); we can show this at the moment only for a restricted class.*)
The Hilbert-Schmidt norm of Q2 is estimated as follows

|IÔ2|Ih.s. <2^ | dn\\R0VR0\\H. S.\\VR0\ no + vR0y (4.30)

We have

H*o hollas. d3p d3q
IKP - q)|2

(p2 + ^)(q2 + nl)

d3k\V(k)\2 d3p
(P2 + >7o)(P - k)2 + nl) (4.31)

with
tio 1 + m

*) See note added in proof.
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The inner integral can be carried out

d3k\V(k)\2J(k) (4.32)11-^0^0 IIh.s.

where

Since J(k) —> n2/n0 for A: —> 0, we must require Ve L2 for the convergence of (4.32)
at k 0, which is a restriction of the infrared condition (4.19). Then, since

7t2

J(k) < — for k < 2n0
*lo

and

J(k) < const/A: for all k,

which implies

J(k) < const/f/0 for all k, (4.34)

we get

II^o^oIIh.s. ^ const||F||2(«2 + m2)"1'4. (4.35)

Now for (4.30) being integrable at infinity, we need additional negative powers of n
from the second factor under the integral (4.30).

We return to the decomposition (4.20). For V2 we have

1

\V2R0\\ < || K21| „limoli || F2
°Yn2 + m2 (4.36)

which decreases rapidly enough for n —> oo. On Vx, however, we must impose an
additional ultraviolet restriction. Instead of (4.26) let us assume

F1(x)eL3+£(R3). (4.37)

Then, following essentially an argument by Prosser [12], Holder's inequality gives

\Wxf\\ < IIM3+j/||s, ^ ^yy^' <4-38>

and the Hausdorff-Young inequality implies

ll/lls<(2703/2-3/l/||r, ^ -|tt- (439)

This can be estimated by Holder's inequality again

I/11, II WP2 + m2 + M)f(Jp2 + m2 + M)"1!

< \\(Jp2 + m2 + M)f\\ ||(Vp2 + m2 + M)-\lt sx 3 + e,

(4.40)
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with arbitrary M. Since

II(vV + m2 + M)f\\ < \\H0f\\ + M\\f\\ (4.41)

and

(Jp2 + m2 + M)'1 ||Sl < constM3'51"1, (4.42)

we finally get

\\VJ\\ < const! VJ3+,(M-''\\H0f\\ + M1-'«/ID, (4.43)

with
e> _i-. (4.44)

3 + £

Taking

/-*o0,
this implies

II^Äotfll < const |m-£'(1 + J"" -) + M
n2 + m2) Jn2 +

< const ^2M"£' + Mw

2
«I

m2

Choosing

M ^/V + m2,

we obtain

This factor produces enough decrease if ë > \, i.e., e > f, that means

^(j()6l"'*+'(Rs) (4.46)

for some (5 > 0. Finally, we must look at the last factor (1 + F/?0)_1 in (4.30). It
follows from the estimate (4.22) that

V vm2 + w2/ vw + m

and this becomes < 1 for |>j| large enough because the constant a can be chosen
< Y Therefore, (1 + VRq)'1 is uniformly bounded on, say, \n\ > n0. For |w| < n0,
it is bounded as well: Since VR0 is compact, (1 -1- VR0)~X is meromorphic; the poles
are point eigenvalues of H and therefore lie on the real axis. Then (1 + VRq)"1 is
bounded on the imaginary axis because we have assumed that 0 is not eigenvalue of
H. Hence, (1 + F/?0)_1 is uniformly bounded in (4.30), leading to a finite Hilbert-
Schmidt norm. Summing up, we have obtained the following class of regular
potentials :

V(x) e (L15'4+ö + L2)(U3) (4.47)
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with (4.18)

d3pp\V(p)\2 < oo. (4.48)

As mentioned in the introduction, there is a second definition of regular external
fields due to Bongaarts [1]. which in contrast to (4.1) reads

po e-iH,po e H s for all t (4 49)

This condition ensures the existence ofa Hamiltonian in Fock space (see the following
paper) and has, for the time being, nothing to do with the existence of a dressed

vacuum. However, the condition (4.1) implies (4.49). This follows simply from

pO e-iH,pO pO e-iH,p +
pO + pOp e-iH,pO

We have not succeeded in proving the converse.3) That both conditions are actually
equivalent is quite plausible from the fact that the first order condition corresponding
to (4.49) [1]

implies (4.13), which follows by integration over t.
It is not difficult to give examples of scalar potentials which are not regular. The

simplest one is the square-well

V(x)= V0 if M <r0
0 if |x| > r0.

Then condition (4.47) is fulfilled which implies that the higher order term Q2 (4.28)
is a Hilbert-Schmidt operator. But (4.48) is not satisfied, consequently Qx (4.9) and
therefore P+ - P° are not Hilbert-Schmidt. To get a regular potential, one has to
smooth out the edges of the square-well. Let us finally remark that in the case of a
time independent vector potential A(x) the first order operator Q1 (4.9) is never a
Hilbert-Schmidt operator (unless A 0). From this, it is quite certain that regular
static magnetic fields do not exist. This would be very surprising and requires further
investigations.

Note added in proof
In a forthcoming paper by G. Nenciu and G. Scharf it is proved that the class of

regular external fields is not larger than (4.21). In particular, no static magnetic field
is regular. On the other hand, we can enlarge the class to almost all of (4.21). All
potentials satisfying

d3pp1+£\V(j>)\2 < oo for some e > 0,
IpISx»

and (4.19) are regular.

3) Labonté [4] states that this is not too difficult, however, his privately communicated proof is not
correct.
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Appendix

Here we will give some details of the computation of the integral (4.13)

801

/ d3p d3q
|K(p - q)|2 pq + m'

EpEq
(A.l)

(Ep + Eq)2

Introducing the integration variables

p - q Pi p + q p2

and integrating over p2 using spherical coordinates p2 (p2, 9, cp), where 9 is the
angle between j>x and p2 and cos 9 z, we get

(A.2)/= \d3pxA(pl)\V(vl)\2

with

A(px) In
i

dz
1 v-p

PÌ
dP2> -&. + £.?

p22-p\ + Am-

4EPEq
(A.3)

\(a + bz) E2 i(a - bz)

a p\ + p\ + Am2 b 2Plp2.

Next the integral over z in (A.3) can be carried out

Ax dz
1

2a + 2(a2 - b2z2)112 \ (a2 - b2z2)1!
1

a - 2p\
A, + A,

A2 2
ab

a — p\ la -l?,-l

A3 baiCtg(b \b2

b \b2

a la2

1/2

1/2

(A.4)

(A.5)

(A.6)

The remaining integrals over p2 lead to elliptic integrals.

We get
'M i

2 -
*

M 1

dp2p\A2 - Yt.{\ dp2(p\ +p\+ Am2) - - ^JP(x)

-\(*m2-p\)Jx-X-(Am2+ p\)2J0

+ \{M - \JX - \(Am2 - 3p2)J0 - 2p\(Am2 + p\)J3}

where

x M2, P(x) x3 + x2(8w2 - 2p\) + x(Am2 + p\)2

(A.7)
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and

Jo

'M2 dx
T

ÇM2
J X

J, dx
o P(x)m l Jo (P(*)112

_
fM2 dx

/3-J0 (x + Am2 + p2x)P(x)1'2- {A*]

The integral over A3 (A.6) is first transformed by partial integration and then treated
in the same way as A2.

"M

dp2p\A3 \M + {-{Jx - 2(p\ + Am2)J0 + 2(p\ + Am2)2J3}. (A.9)
o

Finally, we express the integrals (A.8) for M —> oo by complete elliptic integrals
of the first and second kind, K(k) and E(k)

K(k)0 (p\ + Am2)1'2

J3~*(p2 + Am2)312
K{k)

J2 -+ 2M + 2(p\ + Am2)ll2{K(k) - 2E(k)}

with

k2
P\

p\ + Am2

Collecting all terms and taking the limit M —> oo, we obtain the result (4.16).
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