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Abstract. It is shown that in decay process the regeneration of the undecayed unstable states from the
decay products can not proceed too slowly (in a sense specified below) at small time and correspondingly the
deviation from exponential decay at small time can not be too small either. This is seen to be essentially
a consequence of the semiboundedness of the Hamiltonian. As by product, we also obtain some sufficient
conditions for the existence of certain operator limits that arise in the analysis of continuous observations
in quantum mechanics and in the theory of generalized product formulas for semi-groups.

1. Introduction

In this note we consider two related problems: one pertaining to regeneration in
the decay process of unstable particles [1-4] and the other arising in the analysis of
continuous observation in quantum mechanics [5].

- Let 5# denote the Hilbert space of state vectors of the decaying system together
with its decay products and E denote the projection into the subspace spanned by the
undecayed (unstable) states of the system. EX = I — E then denotes the projection
onto the subspace of ‘decayed’ states. Time-evolution of the total system is described
by a one-parameter unitary group which we denote by U,=e™"#". As discussed in
[3] and [4] absence of regeneration of undecayed unstable states from the decay
products is mathematically expressed by the semi-group property of the reduced
evolution Z(¢) = EU,E:

Z(t + 5) — Z(H)Z(s) = EUE*UE =0 , (1)

fort, s = 0.

Consequences of this assumption (i.e., no regeneration at all time or more
generally no regeneration at all time after a finite initial period) are studied [ 1-4] and
it is found that it is in conflict with the physical requirement that the spectrum of
the Hamiltonian H, the self adjoint generator of U,, be bounded below. Here we study
the consequence of having non vanishing but a slow rate of regeneration. It is shown
that too slow a rate of regeneration at small time (in the sense to be made precise
below) is again in conflict with the semiboundedness of the Hamiltonian.
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As a byproduct of this consideration we also obtain some sufficient conditions
for the existence of the

s — lim (EU,,E)" = T(); t >0 (2)

n—*ao

As discussed in [5] study of this limit arises in the analysis of continuous
observation in quantum mechanics. Unfortunately, the sufficient conditions obtained
here are inapplicable in physically interesting examples but they are given here with
the hope that they might suggest suitable generalizations.

2. Rate of regeneration in decay process

The discussion of both the above-mentioned questions is based on the following
principal theorem.

Theorem 1.

Lett > 0, F(¢), be a strongly continuous contractive family of bounded operators
in # and let for all ¥ in some dense set D,

I LE(t + 5) = FOF$)Y || < Cyr's™; 3)

for z, s =2 0, with « > 1 and C, a constant independent of ¢, s but depending on .
Then F(t)’s form a strongly continuous semigroup, for ¢ = 0:

Ft +5) = FO)Fs); t,s>=0 (4)

Remark. Since || F(f) || < 1itis evident that the condition (3) is actually a restric-
tion on F(¢) for small ¢t and s only, it being automatically satisfied for large ¢ and s.

Proof. Let {t;}?_, be a set of positive numbers. Then

#(5)- 1
_[r (11 -5 t,.) - A [ F(ri)] ’
- (F(tl + _iz ti) — F(tl)F(._iz ti) + F(t,) {F (ZZ t,) [[ K, )H
and therefore using (3) and triangle inequality we obtain,
II[F(Z ) - oy
¢ <o) () frm]y]

NEUL hi‘:"{l i.e'
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Iterating this process and in the end substituting ¢, = t/n for all i, we are led to

ILF(?) — F(z/n)" W

t 2an—1 t 2a (n—1
g C!p'l (E) Z i* S CIII (n) J‘ x“ dx
i 1

2a a+ 1 2a
(n_ 1) _1 4 1-
= = a ., ., 5
=G (n) a+1 Co at+1) " _ ©)

The inequality (5) thus shows that the sequence of operators [ F(¢/n)]" converges
(strongly) to F(f) on D as n — oc. Since the involved family of operators is uniformly
bounded (||[F(¢/n)]"|| < 1) and D is dense in # it then follows that for ¢ = 0

s — lim F(t/n)" = F({) (6)

n— oo

on the whole of #.

Following Chernoff [6] one can now prove the semigroup property of F(¢) from
the relation (6). In fact, let 7 and s be two rationally related positive numbers so that
there exist positive integers p and ¢ such that (s + #)/r(p + q) = s/rp = t/rq for all
integers r. Then

[F(s + 0)/r(p + @I = [F(s/rp))?[F(t/rg)]™
Going to the limit r — co and using (6) we obtain
Fs + 1) = F(s)F(¢)

for all rationally related positive numbers s and 7. The same relation then persists for
all s, ¢ > 0 in view of the assumed continuity of F(z).

Corollary 1.
If for a dense set of vectors / in #

|EUE*UEY| < Cyt*s®; 1,5 >0 (7)
with « > 1 then
EUE*U,=0 forall ts5>0;

i.e., EU,E is a semigroup for ¢ > 0.

To interpret this result phys1cally in the context of particle decay let us note that
the quantity |EUE*U,Ey|?* represents the probability of regeneration of the
undecayed unstable states from the ‘decayed’ component E+U,Ey of the state U, Ey.
Thus the function

R(t,5) = |EUEU.EY|

provides an estimate of (the rate of) regeneration of the undecayed unstable states
from the decay products. The preceding corollary, then, shows that too slow a rate
of regeneration at small time characterized by the inequality (7) with « > 1 implies
that there is in fact no regeneration at all! Absence of regeneration (together with the
physical requirement that the Hamiltonian be semibounded) implies, however, that
there is no decay (U, commutes with E) [1-4, see also the corollary in section 3 of (5)].
We may therefore conclude that in particle decay process regeneration must proceed
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at a sufficiently rapid rate at small time as implied by the fact that the function R(z, s5)
introduced above cannot satisfy the bound

R(t,5) < C,,,t“s“ for t,s >0 with o > 1.

Since the process of regeneration is believed to be the physical mechanism responsible
for the deviation from the exponential decay law [cf. 3] this result indicates also that
the deviation from exponential decay at small time cannot be too small. The present
discussion does not provide, however, a quantitative estimate of this deviation.

In this connection it may be recalled that the necessity for deviation from an
exponential decay law at large time can be ultimately traced, via the Paley-Wiener
theorem, to the semiboundedness of the Hamiltonian [cf. 7]. The preceding discussion
shows that the deviation at small time also can be traced to the same source via theorem
1 and the results of [1-4]. We find that the semiboundedness of the Hamiltonian
implies sufficiently appreciable regeneration and correspondingly non negligible
deviation from exponential decay at small time too. We now turn to the second
question. '

3. The existence of s — lim (EU, ,E)"
n—wo
As mentioned before, the consideration of the above limit arises in the analysis
of continuous observations in quantum theory [5]. Apart from this application,
considerations of such limits seem to possess intrinsic mathematical interest in the
context of extending the Trotter product formula for semigroups [6, 8].
It may be recalled that Trotter’s paper [8] studies the existence and properties of

s — lim [F(¢/n)]" ®)

where F(¢) is of the form
F(r) = S()T(1)

with S(#) and 7(¢) two contraction valued semigroups for ¢ > 0. With a view to
generalizing this analysis Chernoff [6] has investigated the limit (8) when F{(?) is any
strongly continuous contraction valued function. The limit (2) under discussion here
is a special important instance of this generalization.

The known sufficient conditions [6] for the existence of limit (8) are expressed in
terms of the properties of F’(0), the derivative of F(f) at ¢+ = 0, which are difficult to
verify in concrete situations of physical interest. We mention here two other sufficient
conditions that are immediately suggested by the preceding discussion.

One is the condition (7) (with & > 1) of the corollary stated before. But this
condition implies also that EU,E is itself a semigroup for ¢ > 0 so that it applies only
either in the trivial situation that E commutes with U, or in the physically uninteresting
situation that the Hamiltonian H, the generator of U,, is not semibounded. It is thus
desirable to search for conditions that guarantee the existence of the limit (2) without
at the same time implying that EU,E is itself a semigroup. One candidate for such a
condition is again the inequality (7) but with « = 1. We are, however, not able to
decide the truth or falsity of this guess at present but mention the following result in
this direction.
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Theorem 2.
Let

|EU,,sE — EUEUKE| < Cts, t,5 20 --- (6)
Then ‘

(EU,,E)" converges in norm. (7)

Proof. As in the proof of the theorem, substituting « = 1, we conclude that
|EU.E — (EU,,,E)'| < Ct?
and therefore,
(EUymE) — (EUymaE)" || < C(t/m)*
Now
(EUmE)" — (EU, o, EY™

EY}(EU,pyEYym =i~

/mn /mn

= Z (BU,yE) {(EU,mE) — (EU,

Using the triangle inequality and the uniform boundedness of EU,E we obtain
ICEUmE)" — (EUpuE)™| < Ct3/m

Interchanging m and n, we are led to
IEU(uEY" — (EUpmaEY™| < Ct?/n

Therefore,
1 1
I(EUmEY" — (EU,E)| < Cr? (E + ;)ﬁ 0

as n, m — oo. Hence the conclusion follows.

However, once again, this condition is not sufficiently general to settle the
question of existence of the limit in physically interesting situations. In particular, the
question of existence of the limit (2) in the case when U, is the unitary evolution group
of a free particle generated by the free Hamiltonian —A in L?(R?) and E is the projec-
tion on to the subspace of functions with support in a given finite region of R> seems
to be still open [cf. 9].
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